These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 12466278)
1. Effects of endogenous DNA base lesions on transcription elongation by mammalian RNA polymerase II. Implications for transcription-coupled DNA repair and transcriptional mutagenesis. Kuraoka I; Endou M; Yamaguchi Y; Wada T; Handa H; Tanaka K J Biol Chem; 2003 Feb; 278(9):7294-9. PubMed ID: 12466278 [TBL] [Abstract][Full Text] [Related]
2. Effects of DNA lesions on the transcription reaction of mitochondrial RNA polymerase: implications for bypass RNA synthesis on oxidative DNA lesions. Nakanishi N; Fukuoh A; Kang D; Iwai S; Kuraoka I Mutagenesis; 2013 Jan; 28(1):117-23. PubMed ID: 23053822 [TBL] [Abstract][Full Text] [Related]
3. RNA polymerase II bypasses 8-oxoguanine in the presence of transcription elongation factor TFIIS. Kuraoka I; Suzuki K; Ito S; Hayashida M; Kwei JS; Ikegami T; Handa H; Nakabeppu Y; Tanaka K DNA Repair (Amst); 2007 Jun; 6(6):841-51. PubMed ID: 17374514 [TBL] [Abstract][Full Text] [Related]
4. Effect of 8-oxoguanine on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II. Tornaletti S; Maeda LS; Kolodner RD; Hanawalt PC DNA Repair (Amst); 2004 May; 3(5):483-94. PubMed ID: 15084310 [TBL] [Abstract][Full Text] [Related]
5. Transcription elongation past O6-methylguanine by human RNA polymerase II and bacteriophage T7 RNA polymerase. Dimitri A; Burns JA; Broyde S; Scicchitano DA Nucleic Acids Res; 2008 Nov; 36(20):6459-71. PubMed ID: 18854351 [TBL] [Abstract][Full Text] [Related]
6. Transcription activities at 8-oxoG lesions in DNA. Larsen E; Kwon K; Coin F; Egly JM; Klungland A DNA Repair (Amst); 2004 Nov; 3(11):1457-68. PubMed ID: 15380101 [TBL] [Abstract][Full Text] [Related]
7. Molecular basis of transcriptional mutagenesis at 8-oxoguanine. Damsma GE; Cramer P J Biol Chem; 2009 Nov; 284(46):31658-63. PubMed ID: 19758983 [TBL] [Abstract][Full Text] [Related]
8. Mutagenesis of 8-oxoguanine adjacent to an abasic site in simian kidney cells: tandem mutations and enhancement of G-->T transversions. Kalam MA; Basu AK Chem Res Toxicol; 2005 Aug; 18(8):1187-92. PubMed ID: 16097791 [TBL] [Abstract][Full Text] [Related]
9. Strand-specific processing of 8-oxoguanine by the human mismatch repair pathway: inefficient removal of 8-oxoguanine paired with adenine or cytosine. Larson ED; Iams K; Drummond JT DNA Repair (Amst); 2003 Nov; 2(11):1199-210. PubMed ID: 14599742 [TBL] [Abstract][Full Text] [Related]
10. Structural and biochemical analysis of DNA lesion-induced RNA polymerase II arrest. Oh J; Xu J; Chong J; Wang D Methods; 2019 Apr; 159-160():29-34. PubMed ID: 30797902 [TBL] [Abstract][Full Text] [Related]
11. Effects of nonbulky DNA base damages on Escherichia coli RNA polymerase-mediated elongation and promoter clearance. Viswanathan A; Doetsch PW J Biol Chem; 1998 Aug; 273(33):21276-81. PubMed ID: 9694887 [TBL] [Abstract][Full Text] [Related]
12. RNA polymerase II bypass of oxidative DNA damage is regulated by transcription elongation factors. Charlet-Berguerand N; Feuerhahn S; Kong SE; Ziserman H; Conaway JW; Conaway R; Egly JM EMBO J; 2006 Nov; 25(23):5481-91. PubMed ID: 17110932 [TBL] [Abstract][Full Text] [Related]
13. 8-Oxo-guanine DNA damage induces transcription errors by escaping two distinct fidelity control checkpoints of RNA polymerase II. Konovalov KA; Pardo-Avila F; Tse CKM; Oh J; Wang D; Huang X J Biol Chem; 2019 Mar; 294(13):4924-4933. PubMed ID: 30718278 [TBL] [Abstract][Full Text] [Related]
14. Transcription processing at 1,N2-ethenoguanine by human RNA polymerase II and bacteriophage T7 RNA polymerase. Dimitri A; Goodenough AK; Guengerich FP; Broyde S; Scicchitano DA J Mol Biol; 2008 Jan; 375(2):353-66. PubMed ID: 18022639 [TBL] [Abstract][Full Text] [Related]
15. Comparative repair of the endogenous lesions 8-oxo-7, 8-dihydroguanine (8-oxoG), uracil and abasic site by mammalian cell extracts: 8-oxoG is poorly repaired by human cell extracts. Cappelli E; Degan P; Frosina G Carcinogenesis; 2000 Jun; 21(6):1135-41. PubMed ID: 10837001 [TBL] [Abstract][Full Text] [Related]
16. RNA polymerase bypass at sites of dihydrouracil: implications for transcriptional mutagenesis. Liu J; Zhou W; Doetsch PW Mol Cell Biol; 1995 Dec; 15(12):6729-35. PubMed ID: 8524238 [TBL] [Abstract][Full Text] [Related]
17. Single-stranded breaks in DNA but not oxidative DNA base damages block transcriptional elongation by RNA polymerase II in HeLa cell nuclear extracts. Kathe SD; Shen GP; Wallace SS J Biol Chem; 2004 Apr; 279(18):18511-20. PubMed ID: 14978042 [TBL] [Abstract][Full Text] [Related]
18. MUTYH prevents OGG1 or APEX1 from inappropriately processing its substrate or reaction product with its C-terminal domain. Tominaga Y; Ushijima Y; Tsuchimoto D; Mishima M; Shirakawa M; Hirano S; Sakumi K; Nakabeppu Y Nucleic Acids Res; 2004; 32(10):3198-211. PubMed ID: 15199168 [TBL] [Abstract][Full Text] [Related]
19. RNA polymerase II stalls on oxidative DNA damage via a torsion-latch mechanism involving lone pair-π and CH-π interactions. Oh J; Fleming AM; Xu J; Chong J; Burrows CJ; Wang D Proc Natl Acad Sci U S A; 2020 Apr; 117(17):9338-9348. PubMed ID: 32284409 [TBL] [Abstract][Full Text] [Related]
20. DNA adducts from a tumorigenic metabolite of benzo[a]pyrene block human RNA polymerase II elongation in a sequence- and stereochemistry-dependent manner. Perlow RA; Kolbanovskii A; Hingerty BE; Geacintov NE; Broyde S; Scicchitano DA J Mol Biol; 2002 Aug; 321(1):29-47. PubMed ID: 12139931 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]