These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 12466278)
21. Blockage of RNA polymerase II at a cyclobutane pyrimidine dimer and 6-4 photoproduct. Mei Kwei JS; Kuraoka I; Horibata K; Ubukata M; Kobatake E; Iwai S; Handa H; Tanaka K Biochem Biophys Res Commun; 2004 Aug; 320(4):1133-8. PubMed ID: 15249207 [TBL] [Abstract][Full Text] [Related]
22. Effects of the bacterial transcription-repair coupling factor during transcription of DNA containing non-bulky lesions. Smith AJ; Savery NJ DNA Repair (Amst); 2008 Oct; 7(10):1670-9. PubMed ID: 18707026 [TBL] [Abstract][Full Text] [Related]
23. Transcription arrest at a lesion in the transcribed DNA strand in vitro is not affected by a nearby lesion in the opposite strand. Kalogeraki VS; Tornaletti S; Hanawalt PC J Biol Chem; 2003 May; 278(21):19558-64. PubMed ID: 12646562 [TBL] [Abstract][Full Text] [Related]
24. CPD damage recognition by transcribing RNA polymerase II. Brueckner F; Hennecke U; Carell T; Cramer P Science; 2007 Feb; 315(5813):859-62. PubMed ID: 17290000 [TBL] [Abstract][Full Text] [Related]
25. Reconstitution of the base excision repair pathway for 7,8-dihydro-8-oxoguanine with purified human proteins. Pascucci B; Maga G; Hübscher U; Bjoras M; Seeberg E; Hickson ID; Villani G; Giordano C; Cellai L; Dogliotti E Nucleic Acids Res; 2002 May; 30(10):2124-30. PubMed ID: 12000832 [TBL] [Abstract][Full Text] [Related]
26. Binary complex crystal structure of DNA polymerase β reveals multiple conformations of the templating 8-oxoguanine lesion. Batra VK; Shock DD; Beard WA; McKenna CE; Wilson SH Proc Natl Acad Sci U S A; 2012 Jan; 109(1):113-8. PubMed ID: 22178760 [TBL] [Abstract][Full Text] [Related]
27. Fate of RNA polymerase II stalled at a cisplatin lesion. Tremeau-Bravard A; Riedl T; Egly JM; Dahmus ME J Biol Chem; 2004 Feb; 279(9):7751-9. PubMed ID: 14672951 [TBL] [Abstract][Full Text] [Related]
28. Deoxyuridine in DNA has an inhibitory and promutagenic effect on RNA transcription by diverse RNA polymerases. Cui J; Gizzi A; Stivers JT Nucleic Acids Res; 2019 May; 47(8):4153-4168. PubMed ID: 30892639 [TBL] [Abstract][Full Text] [Related]
29. Effect of thymine glycol on transcription elongation by T7 RNA polymerase and mammalian RNA polymerase II. Tornaletti S; Maeda LS; Lloyd DR; Reines D; Hanawalt PC J Biol Chem; 2001 Nov; 276(48):45367-71. PubMed ID: 11571287 [TBL] [Abstract][Full Text] [Related]
30. Structural basis of transcriptional stalling and bypass of abasic DNA lesion by RNA polymerase II. Wang W; Walmacq C; Chong J; Kashlev M; Wang D Proc Natl Acad Sci U S A; 2018 Mar; 115(11):E2538-E2545. PubMed ID: 29487211 [TBL] [Abstract][Full Text] [Related]
31. DNA polymerase minor groove interactions modulate mutagenic bypass of a templating 8-oxoguanine lesion. Freudenthal BD; Beard WA; Wilson SH Nucleic Acids Res; 2013 Feb; 41(3):1848-58. PubMed ID: 23267011 [TBL] [Abstract][Full Text] [Related]
32. Molecular basis of transcriptional pausing, stalling, and transcription-coupled repair initiation. Oh J; Xu J; Chong J; Wang D Biochim Biophys Acta Gene Regul Mech; 2021 Jan; 1864(1):194659. PubMed ID: 33271312 [TBL] [Abstract][Full Text] [Related]
33. Inhibition of DNA replication fork progression and mutagenic potential of 1, N6-ethenoadenine and 8-oxoguanine in human cell extracts. Tolentino JH; Burke TJ; Mukhopadhyay S; McGregor WG; Basu AK Nucleic Acids Res; 2008 Mar; 36(4):1300-8. PubMed ID: 18184697 [TBL] [Abstract][Full Text] [Related]
34. The Nonbulky DNA Lesions Spiroiminodihydantoin and 5-Guanidinohydantoin Significantly Block Human RNA Polymerase II Elongation in Vitro. Kolbanovskiy M; Chowdhury MA; Nadkarni A; Broyde S; Geacintov NE; Scicchitano DA; Shafirovich V Biochemistry; 2017 Jun; 56(24):3008-3018. PubMed ID: 28514164 [TBL] [Abstract][Full Text] [Related]
35. Assays for transcription elongation by RNA polymerase II using oligo(dC)-tailed template with single DNA damage. Kuraoka I; Tanaka K Methods Enzymol; 2006; 408():214-23. PubMed ID: 16793371 [TBL] [Abstract][Full Text] [Related]
36. Recognition of the oxidized lesions spiroiminodihydantoin and guanidinohydantoin in DNA by the mammalian base excision repair glycosylases NEIL1 and NEIL2. Hailer MK; Slade PG; Martin BD; Rosenquist TA; Sugden KD DNA Repair (Amst); 2005 Jan; 4(1):41-50. PubMed ID: 15533836 [TBL] [Abstract][Full Text] [Related]
37. Opposite base-dependent reactions of a human base excision repair enzyme on DNA containing 7,8-dihydro-8-oxoguanine and abasic sites. Bjorâs M; Luna L; Johnsen B; Hoff E; Haug T; Rognes T; Seeberg E EMBO J; 1997 Oct; 16(20):6314-22. PubMed ID: 9321410 [TBL] [Abstract][Full Text] [Related]
38. Mechanism of DNA alkylation-induced transcriptional stalling, lesion bypass, and mutagenesis. Xu L; Wang W; Wu J; Shin JH; Wang P; Unarta IC; Chong J; Wang Y; Wang D Proc Natl Acad Sci U S A; 2017 Aug; 114(34):E7082-E7091. PubMed ID: 28784758 [TBL] [Abstract][Full Text] [Related]
39. Opposite base-dependent excision of 7,8-dihydro-8-oxoadenine by the Ogg1 protein of Saccharomyces cerevisiae. Girard PM; D'Ham C; Cadet J; Boiteux S Carcinogenesis; 1998 Jul; 19(7):1299-305. PubMed ID: 9683192 [TBL] [Abstract][Full Text] [Related]
40. DNA damage-dependent transcriptional arrest and termination of RNA polymerase II elongation complexes in DNA template containing HIV-1 promoter. Wang Z; Rana TM Proc Natl Acad Sci U S A; 1997 Jun; 94(13):6688-93. PubMed ID: 9192626 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]