BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

290 related articles for article (PubMed ID: 12466286)

  • 1. Distribution and characterization of regulatory elements in the human genome.
    Majewski J; Ott J
    Genome Res; 2002 Dec; 12(12):1827-36. PubMed ID: 12466286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transposable elements in disease-associated cryptic exons.
    Vorechovsky I
    Hum Genet; 2010 Feb; 127(2):135-54. PubMed ID: 19823873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exonization of transposed elements: A challenge and opportunity for evolution.
    Schmitz J; Brosius J
    Biochimie; 2011 Nov; 93(11):1928-34. PubMed ID: 21787833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Compensatory relationship between splice sites and exonic splicing signals depending on the length of vertebrate introns.
    Dewey CN; Rogozin IB; Koonin EV
    BMC Genomics; 2006 Dec; 7():311. PubMed ID: 17156453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distribution of exonic splicing enhancer elements in human genes.
    Wu Y; Zhang Y; Zhang J
    Genomics; 2005 Sep; 86(3):329-36. PubMed ID: 16005179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composition-sensitive analysis of the human genome for regulatory signals.
    Kel-Margoulis OV; Tchekmenev D; Kel AE; Goessling E; Hornischer K; Lewicki-Potapov B; Wingender E
    In Silico Biol; 2003; 3(1-2):145-71. PubMed ID: 12954097
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DNA clustering and genome complexity.
    Dios F; Barturen G; Lebrón R; Rueda A; Hackenberg M; Oliver JL
    Comput Biol Chem; 2014 Dec; 53 Pt A():71-8. PubMed ID: 25182383
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comprehensive computational characterization of conserved mammalian intronic sequences reveals conserved motifs associated with constitutive and alternative splicing.
    Voelker RB; Berglund JA
    Genome Res; 2007 Jul; 17(7):1023-33. PubMed ID: 17525134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinguishing regulatory DNA from neutral sites.
    Elnitski L; Hardison RC; Li J; Yang S; Kolbe D; Eswara P; O'Connor MJ; Schwartz S; Miller W; Chiaromonte F
    Genome Res; 2003 Jan; 13(1):64-72. PubMed ID: 12529307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predictive identification of exonic splicing enhancers in human genes.
    Fairbrother WG; Yeh RF; Sharp PA; Burge CB
    Science; 2002 Aug; 297(5583):1007-13. PubMed ID: 12114529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Why Selection Might Be Stronger When Populations Are Small: Intron Size and Density Predict within and between-Species Usage of Exonic Splice Associated cis-Motifs.
    Wu X; Hurst LD
    Mol Biol Evol; 2015 Jul; 32(7):1847-61. PubMed ID: 25771198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intronic alternative splicing regulators identified by comparative genomics in nematodes.
    Kabat JL; Barberan-Soler S; McKenna P; Clawson H; Farrer T; Zahler AM
    PLoS Comput Biol; 2006 Jul; 2(7):e86. PubMed ID: 16839192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AluGene: a database of Alu elements incorporated within protein-coding genes.
    Dagan T; Sorek R; Sharon E; Ast G; Graur D
    Nucleic Acids Res; 2004 Jan; 32(Database issue):D489-92. PubMed ID: 14681464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple sequence elements determine the intron retention in histamine H3 receptors in rats and mice.
    Ding W; Lin L; Xiao Z; Zou H; Duan Z; Dai J
    Int J Biochem Cell Biol; 2009 Nov; 41(11):2281-6. PubMed ID: 19446035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and functional annotation of nested transposable elements in eukaryotic genomes.
    Gao C; Xiao M; Ren X; Hayward A; Yin J; Wu L; Fu D; Li J
    Genomics; 2012 Oct; 100(4):222-30. PubMed ID: 22800764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Variation in sequence and organization of splicing regulatory elements in vertebrate genes.
    Yeo G; Hoon S; Venkatesh B; Burge CB
    Proc Natl Acad Sci U S A; 2004 Nov; 101(44):15700-5. PubMed ID: 15505203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First exons and introns--a survey of GC content and gene structure in the human genome.
    Kalari KR; Casavant M; Bair TB; Keen HL; Comeron JM; Casavant TL; Scheetz TE
    In Silico Biol; 2006; 6(3):237-42. PubMed ID: 16922687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nucleotide frequency variation across human genes.
    Louie E; Ott J; Majewski J
    Genome Res; 2003 Dec; 13(12):2594-601. PubMed ID: 14613976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism for DNA transposons to generate introns on genomic scales.
    Huff JT; Zilberman D; Roy SW
    Nature; 2016 Oct; 538(7626):533-536. PubMed ID: 27760113
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identical sequence patterns in the ends of exons and introns of human protein-coding genes.
    Tavares R; Renaud G; Oliveira PS; Ferreira CG; Dias-Neto E; Passetti F
    Comput Biol Chem; 2012 Feb; 36():55-61. PubMed ID: 22301201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.