BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 12466542)

  • 1. Intron gain and loss in the evolution of the conserved eukaryotic recombination machinery.
    Hartung F; Blattner FR; Puchta H
    Nucleic Acids Res; 2002 Dec; 30(23):5175-81. PubMed ID: 12466542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protist homologs of the meiotic Spo11 gene and topoisomerase VI reveal an evolutionary history of gene duplication and lineage-specific loss.
    Malik SB; Ramesh MA; Hulstrand AM; Logsdon JM
    Mol Biol Evol; 2007 Dec; 24(12):2827-41. PubMed ID: 17921483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and characterization of rad51 orthologs from Coprinus cinereus and Lycopersicon esculentum, and phylogenetic analysis of eukaryotic recA homologs.
    Stassen NY; Logsdon JM; Vora GJ; Offenberg HH; Palmer JD; Zolan ME
    Curr Genet; 1997 Feb; 31(2):144-57. PubMed ID: 9021132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterisation of two paralogous SPO11 homologues in Arabidopsis thaliana.
    Hartung F; Puchta H
    Nucleic Acids Res; 2000 Apr; 28(7):1548-54. PubMed ID: 10710421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of evolution of exon-intron structure of eukaryotic genes.
    Rogozin IB; Sverdlov AV; Babenko VN; Koonin EV
    Brief Bioinform; 2005 Jun; 6(2):118-34. PubMed ID: 15975222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Origins and evolution of the recA/RAD51 gene family: evidence for ancient gene duplication and endosymbiotic gene transfer.
    Lin Z; Kong H; Nei M; Ma H
    Proc Natl Acad Sci U S A; 2006 Jul; 103(27):10328-10333. PubMed ID: 16798872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evolutionary comparisons of RecA-like proteins across all major kingdoms of living organisms.
    Brendel V; Brocchieri L; Sandler SJ; Clark AJ; Karlin S
    J Mol Evol; 1997 May; 44(5):528-41. PubMed ID: 9115177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unique genes in plants: specificities and conserved features throughout evolution.
    Armisén D; Lecharny A; Aubourg S
    BMC Evol Biol; 2008 Oct; 8():280. PubMed ID: 18847470
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Homologous pairing activities of Arabidopsis thaliana RAD51 and DMC1.
    Kobayashi W; Liu E; Ishii H; Matsunaga S; Schlögelhofer P; Kurumizaka H
    J Biochem; 2019 Mar; 165(3):289-295. PubMed ID: 30517709
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution.
    Rogozin IB; Wolf YI; Sorokin AV; Mirkin BG; Koonin EV
    Curr Biol; 2003 Sep; 13(17):1512-7. PubMed ID: 12956953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. recA-like genes from three archaean species with putative protein products similar to Rad51 and Dmc1 proteins of the yeast Saccharomyces cerevisiae.
    Sandler SJ; Satin LH; Samra HS; Clark AJ
    Nucleic Acids Res; 1996 Jun; 24(11):2125-32. PubMed ID: 8668545
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA RECOMBINATION. Base triplet stepping by the Rad51/RecA family of recombinases.
    Lee JY; Terakawa T; Qi Z; Steinfeld JB; Redding S; Kwon Y; Gaines WA; Zhao W; Sung P; Greene EC
    Science; 2015 Aug; 349(6251):977-81. PubMed ID: 26315438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High rate of recent intron gain and loss in simultaneously duplicated Arabidopsis genes.
    Knowles DG; McLysaght A
    Mol Biol Evol; 2006 Aug; 23(8):1548-57. PubMed ID: 16720694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From meiosis to postmeiotic events: uncovering the molecular roles of the meiosis-specific recombinase Dmc1.
    Kagawa W; Kurumizaka H
    FEBS J; 2010 Feb; 277(3):590-8. PubMed ID: 20015079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preferential loss and gain of introns in 3' portions of genes suggests a reverse-transcription mechanism of intron insertion.
    Sverdlov AV; Babenko VN; Rogozin IB; Koonin EV
    Gene; 2004 Aug; 338(1):85-91. PubMed ID: 15302409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exploring the multiple facets of the meiotic recombinase Dmc1.
    Sauvageau S; Ploquin M; Masson JY
    Bioessays; 2004 Nov; 26(11):1151-5. PubMed ID: 15499584
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AtSPO11-1 is necessary for efficient meiotic recombination in plants.
    Grelon M; Vezon D; Gendrot G; Pelletier G
    EMBO J; 2001 Feb; 20(3):589-600. PubMed ID: 11157765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A protein complex containing Mei5 and Sae3 promotes the assembly of the meiosis-specific RecA homolog Dmc1.
    Hayase A; Takagi M; Miyazaki T; Oshiumi H; Shinohara M; Shinohara A
    Cell; 2004 Dec; 119(7):927-40. PubMed ID: 15620352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic mapping of intron positions: a case study of translation initiation factor eIF2gamma.
    Krauss V; Pecyna M; Kurz K; Sass H
    Mol Biol Evol; 2005 Jan; 22(1):74-84. PubMed ID: 15356279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mre11 deficiency in Arabidopsis is associated with chromosomal instability in somatic cells and Spo11-dependent genome fragmentation during meiosis.
    Puizina J; Siroky J; Mokros P; Schweizer D; Riha K
    Plant Cell; 2004 Aug; 16(8):1968-78. PubMed ID: 15258261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.