BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 12467140)

  • 1. Induction of histone acetylation and inhibition of growth of mouse erythroleukemia cells by S-allylmercaptocysteine.
    Lea MA; Rasheed M; Randolph VM; Khan F; Shareef A; desBordes C
    Nutr Cancer; 2002; 43(1):90-102. PubMed ID: 12467140
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of histone acetylation in mouse erythroleukemia cells by some organosulfur compounds including allyl isothiocyanate.
    Lea MA; Randolph VM; Lee JE; desBordes C
    Int J Cancer; 2001 Jun; 92(6):784-9. PubMed ID: 11351296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased acetylation of histones induced by diallyl disulfide and structurally related molecules.
    Lea MA; Randolph VM; Patel M
    Int J Oncol; 1999 Aug; 15(2):347-52. PubMed ID: 10402246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of histone acetylation and growth regulation in eryrthroleukemia cells by 4-phenylbutyrate and structural analogs.
    Lea MA; Randolph VM; Hodge SK
    Anticancer Res; 1999; 19(3A):1971-6. PubMed ID: 10470142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of histone acetylation and inhibition of growth by phenyl alkanoic acids and structurally related molecules.
    Lea MA; Shareef A; Sura M; desBordes C
    Cancer Chemother Pharmacol; 2004 Jul; 54(1):57-63. PubMed ID: 15034756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. K562 human erythroleukemia cell variants resistant to growth inhibition by butyrate have deficient histone acetylation.
    Ohlsson-Wilhelm BM; Farley BA; Kosciolek B; La Bella S; Rowley PT
    Am J Hum Genet; 1984 Nov; 36(6):1225-38. PubMed ID: 6595945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of histone acetylation by garlic sulfur compounds.
    Druesne-Pecollo N; Latino-Martel P
    Anticancer Agents Med Chem; 2011 Mar; 11(3):254-9. PubMed ID: 21269249
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diallyl disulfide (DADS) increases histone acetylation and p21(waf1/cip1) expression in human colon tumor cell lines.
    Druesne N; Pagniez A; Mayeur C; Thomas M; Cherbuy C; Duée PH; Martel P; Chaumontet C
    Carcinogenesis; 2004 Jul; 25(7):1227-36. PubMed ID: 14976134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of estradiol on histone acetylation dynamics in human breast cancer cells.
    Sun JM; Chen HY; Davie JR
    J Biol Chem; 2001 Dec; 276(52):49435-42. PubMed ID: 11682483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Curcumin-induced histone hypoacetylation: the role of reactive oxygen species.
    Kang J; Chen J; Shi Y; Jia J; Zhang Y
    Biochem Pharmacol; 2005 Apr; 69(8):1205-13. PubMed ID: 15794941
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxychloroquine, chloroquine, and all-trans retinoic acid regulate growth, survival, and histone acetylation in breast cancer cells.
    Rahim R; Strobl JS
    Anticancer Drugs; 2009 Sep; 20(8):736-45. PubMed ID: 19584707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Induction of histone acetylation in rat liver and hepatoma by organosulfur compounds including diallyl disulfide.
    Lea MA; Randolph VM
    Anticancer Res; 2001; 21(4A):2841-5. PubMed ID: 11724364
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ginsenoside 20(s)-Rh2 as potent natural histone deacetylase inhibitors suppressing the growth of human leukemia cells.
    Liu ZH; Li J; Xia J; Jiang R; Zuo GW; Li XP; Chen Y; Xiong W; Chen DL
    Chem Biol Interact; 2015 Dec; 242():227-34. PubMed ID: 26482938
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deregulation of polyamine biosynthesis alters intrinsic histone acetyltransferase and deacetylase activities in murine skin and tumors.
    Hobbs CA; Paul BA; Gilmour SK
    Cancer Res; 2002 Jan; 62(1):67-74. PubMed ID: 11782361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Histone acetylation in Zea mays.I. Activities of histone acetyltransferases and histone deacetylases.
    López-Rodas G; Georgieva EI; Sendra R; Loidl P
    J Biol Chem; 1991 Oct; 266(28):18745-50. PubMed ID: 1917997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discordant effects of butyrate analogues on erythroleukemia cell proliferation, differentiation and histone deacetylase.
    Lea MA; Tulsyan N
    Anticancer Res; 1995; 15(3):879-83. PubMed ID: 7645975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of the eosinophilic differentiation of HL-60 clone 15 cells induced by n-butyrate.
    Ishihara K; Hong J; Zee O; Ohuchi K
    Int Arch Allergy Immunol; 2005; 137 Suppl 1():77-82. PubMed ID: 15947489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Butyrate-induced histone hyperacetylation in human and mouse cells: estimation of putative sites of histone acetylation in vivo.
    Pantazis P; Bonner WM
    J Cell Biochem; 1982; 20(3):225-35. PubMed ID: 7169496
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of histone acetyltransferases and deacetylases in gene regulation.
    Kuo MH; Allis CD
    Bioessays; 1998 Aug; 20(8):615-26. PubMed ID: 9780836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear stress-mediated chromatin remodeling provides molecular basis for flow-dependent regulation of gene expression.
    Illi B; Nanni S; Scopece A; Farsetti A; Biglioli P; Capogrossi MC; Gaetano C
    Circ Res; 2003 Jul; 93(2):155-61. PubMed ID: 12805238
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.