BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 12467427)

  • 1. Origins and predictions of stereoselective antibody catalysis: theoretical analysis of Diels-Alder catalysis by 39A11 and its germ-line antibody.
    Zhang X; Deng Q; Yoo SH; Houk KN
    J Org Chem; 2002 Dec; 67(25):9043-53. PubMed ID: 12467427
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunological origins of binding and catalysis in a Diels-Alderase antibody.
    Romesberg FE; Spiller B; Schultz PG; Stevens RC
    Science; 1998 Mar; 279(5358):1929-33. PubMed ID: 9506942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shape complementarity, binding-site dynamics, and transition state stabilization: a theoretical study of Diels-Alder catalysis by antibody 1E9.
    Chen J; Deng Q; Wang R; Houk K; Hilvert D
    Chembiochem; 2000 Nov; 1(4):255-61. PubMed ID: 11828417
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution of shape complementarity and catalytic efficiency from a primordial antibody template.
    Xu J; Deng Q; Chen J; Houk KN; Bartek J; Hilvert D; Wilson IA
    Science; 1999 Dec; 286(5448):2345-8. PubMed ID: 10600746
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An antibody exo Diels-Alderase inhibitor complex at 1.95 angstrom resolution.
    Heine A; Stura EA; Yli-Kauhaluoma JT; Gao C; Deng Q; Beno BR; Houk KN; Janda KD; Wilson IA
    Science; 1998 Mar; 279(5358):1934-40. PubMed ID: 9506943
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental determination of the absolute enantioselectivity of an antibody-catalyzed Diels-Alder reaction and theoretical explorations of the origins of stereoselectivity.
    Cannizzaro CE; Ashley JA; Janda KD; Houk KN
    J Am Chem Soc; 2003 Mar; 125(9):2489-506. PubMed ID: 12603137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insights into the evolution of an antibody combining site.
    Wedemayer GJ; Patten PA; Wang LH; Schultz PG; Stevens RC
    Science; 1997 Jun; 276(5319):1665-9. PubMed ID: 9180069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis for a disfavored elimination reaction in catalytic antibody 1D4.
    Larsen NA; Heine A; Crane L; Cravatt BF; Lerner RA; Wilson IA
    J Mol Biol; 2001 Nov; 314(1):93-102. PubMed ID: 11724535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalysis of decarboxylation by a preorganized heterogeneous microenvironment: crystal structures of abzyme 21D8.
    Hotta K; Lange H; Tantillo DJ; Houk KN; Hilvert D; Wilson IA
    J Mol Biol; 2000 Oct; 302(5):1213-25. PubMed ID: 11183784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparative analysis of the immunological evolution of antibody 28B4.
    Yin J; Mundorff EC; Yang PL; Wendt KU; Hanway D; Stevens RC; Schultz PG
    Biochemistry; 2001 Sep; 40(36):10764-73. PubMed ID: 11535051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational effects in biological catalysis: an antibody-catalyzed oxy-cope rearrangement.
    Mundorff EC; Hanson MA; Varvak A; Ulrich H; Schultz PG; Stevens RC
    Biochemistry; 2000 Feb; 39(4):627-32. PubMed ID: 10651626
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical investigation of the origins of catalysis of a retro-Diels-Alder reaction by antibody 10F11.
    Leach AG; Houk KN; Reymond JL
    J Org Chem; 2004 May; 69(11):3683-92. PubMed ID: 15152997
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The immunological evolution of catalysis.
    Patten PA; Gray NS; Yang PL; Marks CB; Wedemayer GJ; Boniface JJ; Stevens RC; Schultz PG
    Science; 1996 Feb; 271(5252):1086-91. PubMed ID: 8599084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for antibody catalysis of a cationic cyclization reaction.
    Zhu X; Heine A; Monnat F; Houk KN; Janda KD; Wilson IA
    J Mol Biol; 2003 May; 329(1):69-83. PubMed ID: 12742019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A structural basis for the activity of retro-Diels-Alder catalytic antibodies: evidence for a catalytic aromatic residue.
    Hugot M; Bensel N; Vogel M; Reymond MT; Stadler B; Reymond JL; Baumann U
    Proc Natl Acad Sci U S A; 2002 Jul; 99(15):9674-8. PubMed ID: 12093912
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transition state docking: a probe for noncovalent catalysis in biological systems. Application to antibody-catalyzed ester hydrolysis.
    Tantillo DJ; Houk KN
    J Comput Chem; 2002 Jan; 23(1):84-95. PubMed ID: 11913392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression improvement and mechanistic study of the retro-Diels-Alderase catalytic antibody 10F11 by site-directed mutagenesis.
    Zheng L; Goddard JP; Baumann U; Reymond JL
    J Mol Biol; 2004 Aug; 341(3):807-14. PubMed ID: 15288788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for antibody catalysis of a disfavored ring closure reaction.
    Gruber K; Zhou B; Houk KN; Lerner RA; Shevlin CG; Wilson IA
    Biochemistry; 1999 Jun; 38(22):7062-74. PubMed ID: 10353817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunological optimization of a generic hydrophobic pocket for high affinity hapten binding and Diels-Alder activity.
    Piatesi A; Hilvert D
    Chembiochem; 2004 Apr; 5(4):460-6. PubMed ID: 15185369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A structural basis for transition-state stabilization in antibody-catalyzed hydrolysis: crystal structures of an abzyme at 1. 8 A resolution.
    Kristensen O; Vassylyev DG; Tanaka F; Morikawa K; Fujii I
    J Mol Biol; 1998 Aug; 281(3):501-11. PubMed ID: 9698565
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.