BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 12467444)

  • 1. Modulation of phosphoenolpyruvate synthase expression increases shikimate pathway product yields in E. coli.
    Yi J; Li K; Draths KM; Frost JW
    Biotechnol Prog; 2002; 18(6):1141-8. PubMed ID: 12467444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered glucose transport and shikimate pathway product yields in E. coli.
    Yi J; Draths KM; Li K; Frost JW
    Biotechnol Prog; 2003; 19(5):1450-9. PubMed ID: 14524706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fed-batch fermentor synthesis of 3-dehydroshikimic acid using recombinant Escherichia coli.
    Li K; Mikola MR; Draths KM; Worden RM; Frost JW
    Biotechnol Bioeng; 1999 Jul; 64(1):61-73. PubMed ID: 10397840
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Directed evolution of 2-keto-3-deoxy-6-phosphogalactonate aldolase to replace 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthase.
    Ran N; Frost JW
    J Am Chem Soc; 2007 May; 129(19):6130-9. PubMed ID: 17451239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial synthesis of 3-dehydroshikimic acid: a comparative analysis of D-xylose, L-arabinose, and D-glucose carbon sources.
    Li K; Frost JW
    Biotechnol Prog; 1999; 15(5):876-83. PubMed ID: 10514257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphoenolpyruvate availability and the biosynthesis of shikimic acid.
    Chandran SS; Yi J; Draths KM; von Daeniken R; Weber W; Frost JW
    Biotechnol Prog; 2003; 19(3):808-14. PubMed ID: 12790643
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Benzene-free synthesis of catechol: interfacing microbial and chemical catalysis.
    Li W; Xie D; Frost JW
    J Am Chem Soc; 2005 Mar; 127(9):2874-82. PubMed ID: 15740122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pulse experiments as a prerequisite for the quantification of in vivo enzyme kinetics in aromatic amino acid pathway of Escherichia coli.
    Schmitz M; Hirsch E; Bongaerts J; Takors R
    Biotechnol Prog; 2002; 18(5):935-41. PubMed ID: 12363343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shikimic acid production by a modified strain of E. coli (W3110.shik1) under phosphate-limited and carbon-limited conditions.
    Johansson L; Lindskog A; Silfversparre G; Cimander C; Nielsen KF; Lidén G
    Biotechnol Bioeng; 2005 Dec; 92(5):541-52. PubMed ID: 16240440
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Creation of a shikimate pathway variant.
    Ran N; Draths KM; Frost JW
    J Am Chem Soc; 2004 Jun; 126(22):6856-7. PubMed ID: 15174841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroaromatic equilibration during biosynthesis of shikimic acid.
    Knop DR; Draths KM; Chandran SS; Barker JL; von Daeniken R; Weber W; Frost JW
    J Am Chem Soc; 2001 Oct; 123(42):10173-82. PubMed ID: 11603966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolic engineering of Escherichia coli for improving shikimate synthesis from glucose.
    Chen X; Li M; Zhou L; Shen W; Algasan G; Fan Y; Wang Z
    Bioresour Technol; 2014 Aug; 166():64-71. PubMed ID: 24905044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benzene-free synthesis of adipic acid.
    Niu W; Draths KM; Frost JW
    Biotechnol Prog; 2002; 18(2):201-11. PubMed ID: 11934286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploring the effects of carbon sources on the metabolic capacity for shikimic acid production in Escherichia coli using in silico metabolic predictions.
    Ahn JO; Lee HW; Saha R; Park MS; Jung JK; Lee DY
    J Microbiol Biotechnol; 2008 Nov; 18(11):1773-84. PubMed ID: 19047820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inactivation of pyruvate kinase or the phosphoenolpyruvate: sugar phosphotransferase system increases shikimic and dehydroshikimic acid yields from glucose in Bacillus subtilis.
    Licona-Cassani C; Lara AR; Cabrera-Valladares N; Escalante A; Hernández-Chávez G; Martinez A; Bolívar F; Gosset G
    J Mol Microbiol Biotechnol; 2014; 24(1):37-45. PubMed ID: 24158146
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptome analysis of a shikimic acid producing strain of Escherichia coli W3110 grown under carbon- and phosphate-limited conditions.
    Johansson L; Lidén G
    J Biotechnol; 2006 Dec; 126(4):528-45. PubMed ID: 16828913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Site-specific integration and constitutive expression of key genes into Escherichia coli chromosome increases shikimic acid yields.
    Liu X; Lin J; Hu H; Zhou B; Zhu B
    Enzyme Microb Technol; 2016 Jan; 82():96-104. PubMed ID: 26672454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pathway engineering for the production of aromatic compounds in Escherichia coli.
    Flores N; Xiao J; Berry A; Bolivar F; Valle F
    Nat Biotechnol; 1996 May; 14(5):620-3. PubMed ID: 9630954
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorine-containing analogues of intermediates in the Shikimate pathway.
    Pilch PF; Somerville RL
    Biochemistry; 1976 Nov; 15(24):5315-20. PubMed ID: 11811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MFA for overdetermined systems reviewed and compared with rna expression data to elucidate the difference in shikimate yield between carbon- and phosphate-limited continuous cultures of E. coli W3110.shik1.
    Lequeux G; Johansson L; Maertens J; Vanrolleghem PA; Lidén G
    Biotechnol Prog; 2006; 22(4):1056-70. PubMed ID: 16889381
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.