BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12467463)

  • 1. Continuous production of high-content fructooligosaccharides by a complex cell system.
    Sheu DC; Duan KJ; Cheng CY; Bi JL; Chen JY
    Biotechnol Prog; 2002; 18(6):1282-6. PubMed ID: 12467463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production of beta-fructofuranosidase with transfructosylating activity for fructooligosaccharides synthesis by Aspergillus japonicus NTU-1249.
    Su YC; Sheu CS; Chien JY; Tzan TK
    Proc Natl Sci Counc Repub China B; 1991 Jul; 15(3):131-9. PubMed ID: 1819045
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous production of high-purity fructooligosaccharides and ethanol by immobilized Aspergillus japonicus and Pichia heimii.
    Sheu DC; Chang JY; Wang CY; Wu CT; Huang CJ
    Bioprocess Biosyst Eng; 2013 Nov; 36(11):1745-51. PubMed ID: 23568753
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immobilization of beta-fructofuranosidases from Aspergillus on methacrylamide-based polymeric beads for production of fructooligosaccharides.
    Chiang CJ; Lee WC; Sheu DC; Duan KJ
    Biotechnol Prog; 1997; 13(5):577-82. PubMed ID: 9336977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Industrial production of fructooligosaccharides by immobilized cells of Aureobasidium pullulans in a packed bed reactor.
    Jung KH; Bang SH; Oh TK; Park HJ
    Biotechnol Lett; 2011 Aug; 33(8):1621-4. PubMed ID: 21479630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colonization of Aspergillus japonicus on synthetic materials and application to the production of fructooligosaccharides.
    Mussatto SI; Aguilar CN; Rodrigues LR; Teixeira JA
    Carbohydr Res; 2009 Apr; 344(6):795-800. PubMed ID: 19251252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of fructooligosaccharides by crude enzyme preparations of beta-fructofuranosidase from Aureobasidium pullulans.
    Yoshikawa J; Amachi S; Shinoyama H; Fujii T
    Biotechnol Lett; 2008 Mar; 30(3):535-9. PubMed ID: 17968507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery and properties of a fructooligosaccharides-producing beta-fructofuranosidase from Aspergillus japonicus CCRC 38011.
    Su YC; Sheu CS
    Proc Natl Sci Counc Repub China B; 1993 Apr; 17(2):62-9. PubMed ID: 7809276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fructooligosaccharides synthesis by highly stable immobilized β-fructofuranosidase from Aspergillus aculeatus.
    Lorenzoni AS; Aydos LF; Klein MP; Rodrigues RC; Hertz PF
    Carbohydr Polym; 2014 Mar; 103():193-7. PubMed ID: 24528719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and properties of beta-fructofuranosidase from Aspergillus oryzae ATCC 76080.
    Chang CT; Lin YY; Tang MS; Lin CF
    Biochem Mol Biol Int; 1994 Feb; 32(2):269-77. PubMed ID: 8019432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preparation of high-purity fructo-oligosaccharides by Aspergillus japonicus beta-fructofuranosidase and successive cultivation with yeast.
    Yang YL; Wang JH; Teng D; Zhang F
    J Agric Food Chem; 2008 Apr; 56(8):2805-9. PubMed ID: 18333616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous gluconic acid production by the yeast-like Aureobasidium pullulans in a cascading operation of two bioreactors.
    Anastassiadis S; Rehm HJ
    Appl Microbiol Biotechnol; 2006 Dec; 73(3):541-8. PubMed ID: 16906404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of short-chain fructooligosaccharides (scFOS) using extracellular β-D-fructofuranosidase produced by Aspergillus thermomutatus.
    Tódero LM; Rechia CGV; Guimarães LHS
    J Food Biochem; 2019 Aug; 43(8):e12937. PubMed ID: 31368547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of the membrane-bound glucose oxidation system in Gluconobacter oxydans significantly increases gluconate and 5-keto-D-gluconic acid accumulation.
    Merfort M; Herrmann U; Ha SW; Elfari M; Bringer-Meyer S; Görisch H; Sahm H
    Biotechnol J; 2006 May; 1(5):556-63. PubMed ID: 16892291
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microbial co-culturing strategies for fructo-oligosaccharide production.
    Castro CC; Nobre C; De Weireld G; Hantson AL
    N Biotechnol; 2019 Jul; 51():1-7. PubMed ID: 30708187
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of neo-fructooligosaccharides using free-whole-cell biotransformation by Xanthophyllomyces dendrorhous.
    Ning Y; Wang J; Chen J; Yang N; Jin Z; Xu X
    Bioresour Technol; 2010 Oct; 101(19):7472-8. PubMed ID: 20435476
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of glycerol for producing 1,3-dihydroxyacetone by Gluconobacter oxydans in an airlift bioreactor.
    Hu ZC; Zheng YG; Shen YC
    Bioresour Technol; 2011 Jul; 102(14):7177-82. PubMed ID: 21592784
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effective synthesis of high-content fructooligosaccharides in engineered Aspergillus niger.
    Wan X; Wang L; Chang J; Zhang J; Zhang Z; Li K; Sun G; Liu C; Zhong Y
    Microb Cell Fact; 2024 Mar; 23(1):76. PubMed ID: 38461254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An improved method for the production of fructooligosaccharides by immobilized β-fructofuranosidase from Sclerotinia sclerotiorum.
    Mouelhi R; Abidi F; Marzouki MN
    Biotechnol Appl Biochem; 2016; 63(2):281-91. PubMed ID: 25656714
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate selectivity of Gluconobacter oxydans for production of 2,5-diketo-D-gluconic acid and synthesis of 2-keto-L-gulonic acid in a multienzyme system.
    Ji A; Gao P
    Appl Biochem Biotechnol; 2001 Jun; 94(3):213-23. PubMed ID: 11563824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.