BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 12467585)

  • 1. Transgenically encoded protein photoinactivation (FlAsH-FALI): acute inactivation of synaptotagmin I.
    Marek KW; Davis GW
    Neuron; 2002 Dec; 36(5):805-13. PubMed ID: 12467585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptotagmin I is necessary for compensatory synaptic vesicle endocytosis in vivo.
    Poskanzer KE; Marek KW; Sweeney ST; Davis GW
    Nature; 2003 Dec; 426(6966):559-63. PubMed ID: 14634669
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutations in the second C2 domain of synaptotagmin disrupt synaptic transmission at Drosophila neuromuscular junctions.
    Mackler JM; Reist NE
    J Comp Neurol; 2001 Jul; 436(1):4-16. PubMed ID: 11413542
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of SNARE proteins and synaptotagmin I in synaptic transmission: studies at the Drosophila neuromuscular synapse.
    Kidokoro Y
    Neurosignals; 2003; 12(1):13-30. PubMed ID: 12624525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The synaptotagmins: calcium sensors for vesicular trafficking.
    Yoshihara M; Montana ES
    Neuroscientist; 2004 Dec; 10(6):566-74. PubMed ID: 15534041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The C(2)B Ca(2+)-binding motif of synaptotagmin is required for synaptic transmission in vivo.
    Mackler JM; Drummond JA; Loewen CA; Robinson IM; Reist NE
    Nature; 2002 Jul; 418(6895):340-4. PubMed ID: 12110842
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synaptotagmin I functions as a calcium sensor to synchronize neurotransmitter release.
    Yoshihara M; Littleton JT
    Neuron; 2002 Dec; 36(5):897-908. PubMed ID: 12467593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. External Ca2+ dependency of synaptic transmission in drosophila synaptotagmin I mutants.
    Okamoto T; Tamura T; Suzuki K; Kidokoro Y
    J Neurophysiol; 2005 Aug; 94(2):1574-86. PubMed ID: 16061495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential regulation of transmitter release by alternatively spliced forms of synaptotagmin I.
    Nakhost A; Houeland G; Castellucci VF; Sossin WS
    J Neurosci; 2003 Jul; 23(15):6238-44. PubMed ID: 12867508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the conserved WHXL motif in the C terminus of synaptotagmin in synaptic vesicle docking.
    Fukuda M; Moreira JE; Liu V; Sugimori M; Mikoshiba K; LlinĂ¡s RR
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14715-9. PubMed ID: 11114192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphologically docked synaptic vesicles are reduced in synaptotagmin mutants of Drosophila.
    Reist NE; Buchanan J; Li J; DiAntonio A; Buxton EM; Schwarz TL
    J Neurosci; 1998 Oct; 18(19):7662-73. PubMed ID: 9742137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane penetration by synaptotagmin is required for coupling calcium binding to vesicle fusion in vivo.
    Paddock BE; Wang Z; Biela LM; Chen K; Getzy MD; Striegel A; Richmond JE; Chapman ER; Featherstone DE; Reist NE
    J Neurosci; 2011 Feb; 31(6):2248-57. PubMed ID: 21307261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential regulation of synchronous versus asynchronous neurotransmitter release by the C2 domains of synaptotagmin 1.
    Yoshihara M; Guan Z; Littleton JT
    Proc Natl Acad Sci U S A; 2010 Aug; 107(33):14869-74. PubMed ID: 20679236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distribution of the presynaptic calcium sensors, synaptotagmin I/II and synaptotagmin III, in the goldfish and rodent retinas.
    Berntson AK; Morgans CW
    J Vis; 2003; 3(4):274-80. PubMed ID: 12803536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptotagmins are trafficked to distinct subcellular domains including the postsynaptic compartment.
    Adolfsen B; Saraswati S; Yoshihara M; Littleton JT
    J Cell Biol; 2004 Jul; 166(2):249-60. PubMed ID: 15263020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synaptotagmin modulation of fusion pore kinetics in regulated exocytosis of dense-core vesicles.
    Wang CT; Grishanin R; Earles CA; Chang PY; Martin TF; Chapman ER; Jackson MB
    Science; 2001 Nov; 294(5544):1111-5. PubMed ID: 11691996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synaptotagmins I and IV promote transmitter release independently of Ca(2+) binding in the C(2)A domain.
    Robinson IM; Ranjan R; Schwarz TL
    Nature; 2002 Jul; 418(6895):336-40. PubMed ID: 12110845
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synaptic transmission persists in synaptotagmin mutants of Drosophila.
    DiAntonio A; Parfitt KD; Schwarz TL
    Cell; 1993 Jul; 73(7):1281-90. PubMed ID: 8100740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drosophila synaptotagmin I null mutants survive to early adulthood.
    Loewen CA; Mackler JM; Reist NE
    Genesis; 2001 Sep; 31(1):30-6. PubMed ID: 11668675
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Complexin controls spontaneous and evoked neurotransmitter release by regulating the timing and properties of synaptotagmin activity.
    Jorquera RA; Huntwork-Rodriguez S; Akbergenova Y; Cho RW; Littleton JT
    J Neurosci; 2012 Dec; 32(50):18234-45. PubMed ID: 23238737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.