These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 12468004)

  • 1. NEUROFIT: software for fitting Hodgkin-Huxley models to voltage-clamp data.
    Willms AR
    J Neurosci Methods; 2002 Dec; 121(2):139-50. PubMed ID: 12468004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An improved parameter estimation method for Hodgkin-Huxley models.
    Willms AR; Baro DJ; Harris-Warrick RM; Guckenheimer J
    J Comput Neurosci; 1999; 6(2):145-68. PubMed ID: 10333160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time kinetic modeling of voltage-gated ion channels using dynamic clamp.
    Milescu LS; Yamanishi T; Ptak K; Mogri MZ; Smith JC
    Biophys J; 2008 Jul; 95(1):66-87. PubMed ID: 18375511
    [TBL] [Abstract][Full Text] [Related]  

  • 4. KChIP1 and frequenin modify shal-evoked potassium currents in pyloric neurons in the lobster stomatogastric ganglion.
    Zhang Y; MacLean JN; An WF; Lanning CC; Harris-Warrick RM
    J Neurophysiol; 2003 Apr; 89(4):1902-9. PubMed ID: 12612050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation of the steady-state characteristics of the Hodgkin-Huxley model from voltage-clamp data.
    Beaumont J; Roberge FA; Lemieux DR
    Math Biosci; 1993 Jun; 115(2):145-86. PubMed ID: 7685213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling a non-inactivating delayed rectifier cardiac current using voltage clamp data.
    Lemieux DR; Chicoine H; Roberge FA
    J Theor Biol; 1994 Aug; 169(4):363-73. PubMed ID: 7526074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A numerical procedure to estimate kinetic and steady-state characteristics of inactivating ionic currents.
    Tóth TI; Crunelli V
    J Neurosci Methods; 1995 Dec; 63(1-2):1-12. PubMed ID: 8788042
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hodgkin-Huxley type ion channel characterization: an improved method of voltage clamp experiment parameter estimation.
    Lee J; Smaill B; Smith N
    J Theor Biol; 2006 Sep; 242(1):123-34. PubMed ID: 16563440
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlled hidden markov models for dynamically adapting patch clamp experiment to estimate Nernst potential of single-ion channels.
    Krishnamurthy V; Yin GG
    IEEE Trans Nanobioscience; 2006 Jun; 5(2):115-25. PubMed ID: 16805108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. StdpC: a modern dynamic clamp.
    Nowotny T; Szucs A; Pinto RD; Selverston AI
    J Neurosci Methods; 2006 Dec; 158(2):287-99. PubMed ID: 16846647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage-operated potassium currents in the somatic membrane of rat dorsal root ganglion neurons: ontogenetic aspects.
    Fedulova SA; Vasilyev DV; Veselovsky NS
    Neuroscience; 1998 Jul; 85(2):497-508. PubMed ID: 9622247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interactions between potassium and sodium currents in generating action potentials in the rat sympathetic neurone.
    Belluzzi O; Sacchi O
    J Physiol; 1988 Mar; 397():127-47. PubMed ID: 2457694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Corrections for space-clamp errors in measured parameters of voltage-dependent conductances in a cylindrical neurite.
    Castelfranco AM; Hartline DK
    Biol Cybern; 2004 Apr; 90(4):280-90. PubMed ID: 15085347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postnatal maturation of rat hypothalamoneurohypophysial neurons: evidence for a developmental decrease in calcium entry during action potentials.
    Widmer H; Amerdeil H; Fontanaud P; Desarménien MG
    J Neurophysiol; 1997 Jan; 77(1):260-71. PubMed ID: 9120568
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization and decomposition of voltage-activated ionic currents using a fitting numerical method.
    Szücs A
    J Neurosci Methods; 1994 Mar; 51(2):155-62. PubMed ID: 7519698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A- and C-type rat nodose sensory neurons: model interpretations of dynamic discharge characteristics.
    Schild JH; Clark JW; Hay M; Mendelowitz D; Andresen MC; Kunze DL
    J Neurophysiol; 1994 Jun; 71(6):2338-58. PubMed ID: 7523613
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Panulirus interruptus Ih-channel gene PIIH: modification of channel properties by alternative splicing and role in rhythmic activity.
    Ouyang Q; Goeritz M; Harris-Warrick RM
    J Neurophysiol; 2007 Jun; 97(6):3880-92. PubMed ID: 17409170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A computer program for the estimation of kinetic parameters of membrane currents based on the Gauss-Newton method.
    Grave de Peralta R; Hernández JL; Castellanos M; Garateix A
    Int J Biomed Comput; 1991; 28(1-2):47-52. PubMed ID: 1889905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the interpretation of voltage-clamp data using the Hodgkin-Huxley model.
    Beaumont J; Roberge FA; Leon LJ
    Math Biosci; 1993 May; 115(1):65-101. PubMed ID: 7685212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Models of subthreshold membrane resonance in neocortical neurons.
    Hutcheon B; Miura RM; Puil E
    J Neurophysiol; 1996 Aug; 76(2):698-714. PubMed ID: 8871192
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.