BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 12468541)

  • 1. Revisiting monomeric HIV-1 protease. Characterization and redesign for improved properties.
    Louis JM; Ishima R; Nesheiwat I; Pannell LK; Lynch SM; Torchia DA; Gronenborn AM
    J Biol Chem; 2003 Feb; 278(8):6085-92. PubMed ID: 12468541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folded monomer of HIV-1 protease.
    Ishima R; Ghirlando R; Tözsér J; Gronenborn AM; Torchia DA; Louis JM
    J Biol Chem; 2001 Dec; 276(52):49110-6. PubMed ID: 11598128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solution structure of the mature HIV-1 protease monomer: insight into the tertiary fold and stability of a precursor.
    Ishima R; Torchia DA; Lynch SM; Gronenborn AM; Louis JM
    J Biol Chem; 2003 Oct; 278(44):43311-9. PubMed ID: 12933791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing the dimer dissociation and existence of a folded monomer of the mature HIV-2 protease.
    Louis JM; Ishima R; Aniana A; Sayer JM
    Protein Sci; 2009 Dec; 18(12):2442-53. PubMed ID: 19798742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Systematic mutational analysis of the active-site threonine of HIV-1 proteinase: rethinking the "fireman's grip" hypothesis.
    Strisovsky K; Tessmer U; Langner J; Konvalinka J; Kräusslich HG
    Protein Sci; 2000 Sep; 9(9):1631-41. PubMed ID: 11045610
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autoprocessing of HIV-1 protease is tightly coupled to protein folding.
    Louis JM; Clore GM; Gronenborn AM
    Nat Struct Biol; 1999 Sep; 6(9):868-75. PubMed ID: 10467100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of dimer stability in yeast pyrophosphatase by mutations at the subunit interface and ligand binding to the active site.
    Salminen A; Parfenyev AN; Salli K; Efimova IS; Magretova NN; Goldman A; Baykov AA; Lahti R
    J Biol Chem; 2002 May; 277(18):15465-71. PubMed ID: 11854292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution NMR evidence that the HIV-1 protease catalytic aspartyl groups have different ionization states in the complex formed with the asymmetric drug KNI-272.
    Wang YX; Freedberg DI; Yamazaki T; Wingfield PT; Stahl SJ; Kaufman JD; Kiso Y; Torchia DA
    Biochemistry; 1996 Aug; 35(31):9945-50. PubMed ID: 8756455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallographic analysis of human immunodeficiency virus 1 protease with an analog of the conserved CA-p2 substrate -- interactions with frequently occurring glutamic acid residue at P2' position of substrates.
    Weber IT; Wu J; Adomat J; Harrison RW; Kimmel AR; Wondrak EM; Louis JM
    Eur J Biochem; 1997 Oct; 249(2):523-30. PubMed ID: 9370363
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of the dimerization of retroviral proteases: the "fireman's grip" and dimerization.
    Ingr M; Uhlíková T; Strísovský K; Majerová E; Konvalinka J
    Protein Sci; 2003 Oct; 12(10):2173-82. PubMed ID: 14500875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A folding inhibitor of the HIV-1 protease.
    Broglia RA; Provasi D; Vasile F; Ottolina G; Longhi R; Tiana G
    Proteins; 2006 Mar; 62(4):928-33. PubMed ID: 16385559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing the S1/S1' substrate binding pocket geometry of HIV-1 protease with modified aspartic acid analogues.
    Short GF; Laikhter AL; Lodder M; Shayo Y; Arslan T; Hecht SM
    Biochemistry; 2000 Aug; 39(30):8768-81. PubMed ID: 10913288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autocatalytic maturation, physical/chemical properties, and crystal structure of group N HIV-1 protease: relevance to drug resistance.
    Sayer JM; Agniswamy J; Weber IT; Louis JM
    Protein Sci; 2010 Nov; 19(11):2055-72. PubMed ID: 20737578
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational stability of dimeric and monomeric forms of the C-terminal domain of human immunodeficiency virus-1 capsid protein.
    Mateu MG
    J Mol Biol; 2002 Apr; 318(2):519-31. PubMed ID: 12051856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Asp-369 and Arg-372 mutations on heme environment and function in human endothelial nitric-oxide synthase.
    Chen PF; Berka V; Tsai AL; Wu KK
    J Biol Chem; 1998 Dec; 273(51):34164-70. PubMed ID: 9852077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of the cysteine residues in the amino-terminal extracellular domain of the human Ca(2+) receptor critical for dimerization. Implications for function of monomeric Ca(2+) receptor.
    Ray K; Hauschild BC; Steinbach PJ; Goldsmith PK; Hauache O; Spiegel AM
    J Biol Chem; 1999 Sep; 274(39):27642-50. PubMed ID: 10488104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inducible nitric oxide synthase: role of the N-terminal beta-hairpin hook and pterin-binding segment in dimerization and tetrahydrobiopterin interaction.
    Ghosh DK; Crane BR; Ghosh S; Wolan D; Gachhui R; Crooks C; Presta A; Tainer JA; Getzoff ED; Stuehr DJ
    EMBO J; 1999 Nov; 18(22):6260-70. PubMed ID: 10562538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subunit interface residues of glutathione S-transferase A1-1 that are important in the monomer-dimer equilibrium.
    Vargo MA; Nguyen L; Colman RF
    Biochemistry; 2004 Mar; 43(12):3327-35. PubMed ID: 15035604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-based thermodynamic analysis of caspases reveals key residues for dimerization and activity.
    Piana S; Sulpizi M; Rothlisberger U
    Biochemistry; 2003 Jul; 42(29):8720-8. PubMed ID: 12873132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutational and structural studies aimed at characterizing the monomer of HIV-1 protease and its precursor.
    Ishima R; Torchia DA; Louis JM
    J Biol Chem; 2007 Jun; 282(23):17190-9. PubMed ID: 17412697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.