BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 12468541)

  • 21. Mutagenesis of the dimer interface residues of tethered and untethered HIV-1 protease result in differential activity and suggest multiple mechanisms of compensation.
    Choudhury S; Everitt L; Pettit SC; Kaplan AH
    Virology; 2003 Mar; 307(2):204-12. PubMed ID: 12667791
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The folding and dimerization of HIV-1 protease: evidence for a stable monomer from simulations.
    Levy Y; Caflisch A; Onuchic JN; Wolynes PG
    J Mol Biol; 2004 Jun; 340(1):67-79. PubMed ID: 15184023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comprehensive mutagenesis of HIV-1 protease: a computational geometry approach.
    Masso M; Vaisman II
    Biochem Biophys Res Commun; 2003 May; 305(2):322-6. PubMed ID: 12745077
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dimerization interactions of the b subunit of the Escherichia coli F1F0-ATPase.
    McLachlin DT; Dunn SD
    J Biol Chem; 1997 Aug; 272(34):21233-9. PubMed ID: 9261132
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crystal structure of human immunodeficiency virus (HIV) type 2 protease in complex with a reduced amide inhibitor and comparison with HIV-1 protease structures.
    Tong L; Pav S; Pargellis C; Dô F; Lamarre D; Anderson PC
    Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8387-91. PubMed ID: 8378311
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of subunit interaction by introducing disulfide bonds at the dimerization domain of Hin recombinase.
    Lim HM
    J Biol Chem; 1994 Dec; 269(49):31134-42. PubMed ID: 7983055
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermodynamic characterization of the DmsD binding site for the DmsA twin-arginine motif.
    Winstone TM; Turner RJ
    Biochemistry; 2015 Mar; 54(11):2040-51. PubMed ID: 25659414
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modulation of dimerization, binding, stability, and folding by mutation of the neurophysin subunit interface.
    Eubanks S; Nguyen TL; Peyton D; Breslow E
    Biochemistry; 2000 Jul; 39(27):8085-94. PubMed ID: 10891091
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibitor and substrate binding induced stability of HIV-1 protease against sequential dissociation and unfolding revealed by high pressure spectroscopy and kinetics.
    Ingr M; Lange R; Halabalová V; Yehya A; Hrnčiřík J; Chevalier-Lucia D; Palmade L; Blayo C; Konvalinka J; Dumay E
    PLoS One; 2015; 10(3):e0119099. PubMed ID: 25781460
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crystal structure of an in vivo HIV-1 protease mutant in complex with saquinavir: insights into the mechanisms of drug resistance.
    Hong L; Zhang XC; Hartsuck JA; Tang J
    Protein Sci; 2000 Oct; 9(10):1898-904. PubMed ID: 11106162
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Site-directed mutagenesis of HIV-1 protease: generation of mutant proteases with increased stability to autodigestion.
    Tomasselli AG; Mildner AM; Rothrock DJ; Sarcich JL; Lull J; Leone J; Heinrikson R
    Adv Exp Med Biol; 1995; 362():473-7. PubMed ID: 8540360
    [No Abstract]   [Full Text] [Related]  

  • 32. NMR structural studies of human cystatin C dimers and monomers.
    Ekiel I; Abrahamson M; Fulton DB; Lindahl P; Storer AC; Levadoux W; Lafrance M; Labelle S; Pomerleau Y; Groleau D; LeSauteur L; Gehring K
    J Mol Biol; 1997 Aug; 271(2):266-77. PubMed ID: 9268658
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structure of schistatin, a disintegrin homodimer from saw-scaled viper (Echis carinatus) at 2.5 A resolution.
    Bilgrami S; Tomar S; Yadav S; Kaur P; Kumar J; Jabeen T; Sharma S; Singh TP
    J Mol Biol; 2004 Aug; 341(3):829-37. PubMed ID: 15317139
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contributions of the interdomain loop, amino terminus, and subunit interface to the ligand-facilitated dimerization of neurophysin: crystal structures and mutation studies of bovine neurophysin-I.
    Li X; Lee H; Wu J; Breslow E
    Protein Sci; 2007 Jan; 16(1):52-68. PubMed ID: 17192588
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of monomeric forms of galectin-1 generated by site-directed mutagenesis.
    Cho M; Cummings RD
    Biochemistry; 1996 Oct; 35(40):13081-8. PubMed ID: 8855944
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissociation and association of the HIV-1 protease dimer subunits: equilibria and rates.
    Darke PL; Jordan SP; Hall DL; Zugay JA; Shafer JA; Kuo LC
    Biochemistry; 1994 Jan; 33(1):98-105. PubMed ID: 8286367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Triterpenes as potential dimerization inhibitors of HIV-1 protease.
    Quéré L; Wenger T; Schramm HJ
    Biochem Biophys Res Commun; 1996 Oct; 227(2):484-8. PubMed ID: 8967903
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Folding a WD repeat propeller. Role of highly conserved aspartic acid residues in the G protein beta subunit and Sec13.
    Garcia-Higuera I; Gaitatzes C; Smith TF; Neer EJ
    J Biol Chem; 1998 Apr; 273(15):9041-9. PubMed ID: 9535892
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Real time NMR monitoring of local unfolding of HIV-1 protease tethered dimer driven by autolysis.
    Panchal SC; Bhavesh NS; Hosur RV
    FEBS Lett; 2001 May; 497(1):59-64. PubMed ID: 11376663
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aspartic acid 405 contributes to the substrate specificity of aminopeptidase B.
    Fukasawa KM; Hirose J; Hata T; Ono Y
    Biochemistry; 2006 Sep; 45(38):11425-31. PubMed ID: 16981702
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.