These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
568 related articles for article (PubMed ID: 12469843)
1. Assessment of spatial variation of cesium-137 in small catchments. van der Perk M; Slávik O; Fulajtár E J Environ Qual; 2002; 31(6):1930-9. PubMed ID: 12469843 [TBL] [Abstract][Full Text] [Related]
2. Soil redistribution model for undisturbed and cultivated sites based on Chernobyl-derived cesium-137 fallout. Hrachowitz M; Maringer FJ; Steineder C; Gerzabek MH J Environ Qual; 2005; 34(4):1302-10. PubMed ID: 15998852 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of 137Cs fallout from the Chernobyl accident in a forest soil and its impact on Alpine Lake sediments, Mercantour Massif, S.E. France. Rezzoug S; Michel H; Fernex F; Barci-Funel G; Barci V J Environ Radioact; 2006; 85(2-3):369-79. PubMed ID: 16102877 [TBL] [Abstract][Full Text] [Related]
4. Iodine-129 and caesium-137 in Chernobyl contaminated soil and their chemical fractionation. Hou XL; Fogh CL; Kucera J; Andersson KG; Dahlgaard H; Nielsen SP Sci Total Environ; 2003 Jun; 308(1-3):97-109. PubMed ID: 12738204 [TBL] [Abstract][Full Text] [Related]
5. Transfer and behaviour of 137Cs in two Finnish lakes and their catchments. Saxén R; Ilus E Sci Total Environ; 2008 May; 394(2-3):349-60. PubMed ID: 18313103 [TBL] [Abstract][Full Text] [Related]
6. Long-term flux of Chernobyl-derived 137Cs from soil to French rivers: a study on sediment and biological indicators. Vray F; Debayle C; Louvat D J Environ Radioact; 2003; 68(2):93-114. PubMed ID: 12763323 [TBL] [Abstract][Full Text] [Related]
7. Monitoring of radionuclides contamination of soils in Shatsk National Natural Park (Volyn region, Ukraine) during 1994-2001. Hrabovskyy V; Dzendzelyuk O; Katerynchuk I; Furgala Y J Environ Radioact; 2004; 72(1-2):25-33. PubMed ID: 15162852 [TBL] [Abstract][Full Text] [Related]
8. Mapping of 137Cs deposition over eastern France 16 years after the Chernobyl accident. Renaud P; Pourcelot L; Métivier JM; Morello M Sci Total Environ; 2003 Jun; 309(1-3):257-64. PubMed ID: 12798109 [TBL] [Abstract][Full Text] [Related]
9. Activity ratios of 137Cs, 90Sr and 239+240Pu in environmental samples. Bossew P; Lettner H; Hubmer A; Erlinger C; Gastberger M J Environ Radioact; 2007; 97(1):5-19. PubMed ID: 17407799 [TBL] [Abstract][Full Text] [Related]
10. A new method to account for the depth distribution of 137Cs in soils in the calculation of external radiation dose-rate. Timms DN; Smith JT; Cross MA; Kudelsky AV; Horton G; Mortlock R J Environ Radioact; 2004; 72(3):323-34. PubMed ID: 14972413 [TBL] [Abstract][Full Text] [Related]
11. Radioactive contamination of the Balchug (Upper Yenisey) floodplain, Russia in relation to sedimentation processes and geomorphology. Linnik VG; Brown JE; Dowdall M; Potapov VN; Surkov VV; Korobova EM; Volosov AG; Vakulovsky SM; Tertyshnik EG Sci Total Environ; 2005 Mar; 339(1-3):233-51. PubMed ID: 15740772 [TBL] [Abstract][Full Text] [Related]
12. Accumulation of Chernobyl-derived 137Cs in bottom sediments of some Finnish lakes. Ilus E; Saxén R J Environ Radioact; 2005; 82(2):199-221. PubMed ID: 15878418 [TBL] [Abstract][Full Text] [Related]
13. Discharge of 137Cs and 90Sr by Finnish rivers to the Baltic Sea in 1986-1996. Saxén R; Ilus E J Environ Radioact; 2001; 54(2):275-91. PubMed ID: 11378921 [TBL] [Abstract][Full Text] [Related]
14. Processes, dynamics and modelling of radiocaesium cycling in a chronosequence of Chernobyl-contaminated Scots pine (Pinus sylvestris L.) plantations. Goor F; Thiry Y Sci Total Environ; 2004 Jun; 325(1-3):163-80. PubMed ID: 15144787 [TBL] [Abstract][Full Text] [Related]
15. A new generic sub-model for radionuclide fixation in large catchments from continuous and single-pulse fallouts, as used in a river model. Håkanson L J Environ Radioact; 2004; 77(3):247-73. PubMed ID: 15381320 [TBL] [Abstract][Full Text] [Related]
16. In situ measurements of the sub-surface gamma dose from Chernobyl fallout. Timms DN; Smith JT; Coe E; Kudelsky AV; Yankov AI Appl Radiat Isot; 2005 Jun; 62(6):923-30. PubMed ID: 15799871 [TBL] [Abstract][Full Text] [Related]
17. Modeling radiocesium transport from a river catchment based on a physically-based distributed hydrological and sediment erosion model. Kinouchi T; Yoshimura K; Omata T J Environ Radioact; 2015 Jan; 139():407-415. PubMed ID: 25131841 [TBL] [Abstract][Full Text] [Related]
18. Contamination of Austrian soil with caesium-137. Bossew P; Ditto M; Falkner T; Henrich E; Kienzl K; Rappelsberger U J Environ Radioact; 2001; 55(2):187-94. PubMed ID: 11398378 [TBL] [Abstract][Full Text] [Related]
19. Radionuclides in the liquid phase of the forest soils at the Chernobyl accident zone. Agapkina GI; Tikhomirov FA Sci Total Environ; 1994 Dec; 157(1-3):267-73. PubMed ID: 7839114 [TBL] [Abstract][Full Text] [Related]
20. Distribution of 137Cs in the Lena River estuary-Laptev Sea system. Johnson-Pyrtle A; Scott MR Mar Pollut Bull; 2001 Oct; 42(10):912-26. PubMed ID: 11693646 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]