These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 12470036)

  • 1. Parallel replacement of the oxygenator that is not transferring oxygen: the PRONTO procedure.
    Groom RC; Forest RJ; Cormack JE; Niimi KS; Morton J
    Perfusion; 2002 Nov; 17(6):447-50. PubMed ID: 12470036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Method to Detect an Oxygenator Defect Prior to Cardiopulmonary Bypass Initiation.
    Fernandes A; Laliberte E; Toledano K; Demers P
    J Extra Corpor Technol; 2015 Sep; 47(3):180-2. PubMed ID: 26543253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of Capiox RX25 and Quadrox-i Adult Hollow Fiber Membrane Oxygenators in a Simulated Cardiopulmonary Bypass Circuit.
    Wang S; Kunselman AR; Ündar A
    Artif Organs; 2016 May; 40(5):E69-78. PubMed ID: 27168381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of hollow-fiber membrane oxygenators in terms of pressure drop of the membranes during normothermic and hypothermic cardiopulmonary bypass in neonates.
    Undar A; Owens WR; McGarry MC; Surprise DL; Kilpack VD; Mueller MW; McKenzie ED; Fraser CD
    Perfusion; 2005 May; 20(3):135-8. PubMed ID: 16038384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Normal and abnormal trans-oxygenator pressure gradients during cardiopulmonary bypass.
    Fisher AR; Baker M; Buffin M; Campbell P; Hansbro S; Kennington S; Lilley A; Whitehorne M
    Perfusion; 2003 Mar; 18(1):25-30. PubMed ID: 12705647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epoprostenol for the treatment of increasing oxygenator pressure drop during cardiopulmonary bypass. A case report.
    Hjärpe AK; Reinsfelt B
    Perfusion; 2018 Apr; 33(3):228-231. PubMed ID: 28872410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of neonatal membrane oxygenators with respect to gaseous microemboli capture and transmembrane pressure gradients.
    Qiu F; Guan Y; Su X; Kunselman A; Undar A
    Artif Organs; 2010 Nov; 34(11):923-9. PubMed ID: 21092035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Runaway pump head: new cause of gas embolism during cardiopulmonary bypass.
    Kurusz M; Shaffer CW; Christman EW; Tyers GF
    J Thorac Cardiovasc Surg; 1979 May; 77(5):792-5. PubMed ID: 431117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of oxygenator mechanical characteristics on energy transfer during clinical cardiopulmonary bypass.
    Ganushchak YM; Reesink KD; Weerwind PW; Maessen JG
    Perfusion; 2011 Jan; 26(1):39-44. PubMed ID: 20921084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated Oxygenator FX05.
    Horton SB; Donath S; Thuys CA; Bennett MJ; Augustin SL; Horton AM; Schultz BJ; Bottrell SJ; Konstantinov I; d'Udekem Y; Brizard C
    ASAIO J; 2011; 57(6):522-6. PubMed ID: 21970981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hypothermic Cardiopulmonary Bypass Weaning and Prolonged Postoperative Rewarming in a Patient With Intraoperative Oxygenator Thrombosis.
    Grant I; Breidenstein M; Parsee A; Krumholz C; Martin J
    J Cardiothorac Vasc Anesth; 2018 Aug; 32(4):1851-1854. PubMed ID: 29221982
    [No Abstract]   [Full Text] [Related]  

  • 12. Evaluation of three hollow-fiber membrane oxygenators without integrated arterial filters for neonatal cardiopulmonary bypass.
    Dogal NM; Mathis RK; Lin J; Qiu F; Kunselman A; Undar A
    Perfusion; 2012 Mar; 27(2):132-40. PubMed ID: 22115879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water condensation from gas outlet of oxygenator.
    Condello I; Moscarelli M; Santarpino G; Fattouch K; Nasso G; Speziale G
    J Card Surg; 2020 Aug; 35(8):2039-2040. PubMed ID: 32652821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The proposed use of a 'screening test' to assess oxygenator performance.
    Fried DW; Wilgus MA; Weiss SJ
    Perfusion; 1993; 8(4):299-306. PubMed ID: 10146366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygenator failure.
    Kurusz M; Conti VR; Arens JF
    Ann Thorac Surg; 1990 Mar; 49(3):511-2. PubMed ID: 2310269
    [No Abstract]   [Full Text] [Related]  

  • 16. A Novel Blood Viscosity Estimation Method Based on Pressure-Flow Characteristics of an Oxygenator During Cardiopulmonary Bypass.
    Okahara S; Soh Z; Miyamoto S; Takahashi H; Itoh H; Takahashi S; Sueda T; Tsuji T
    Artif Organs; 2017 Mar; 41(3):262-266. PubMed ID: 27782314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of different diameter arterial tubing and arterial cannulae in simulated neonatal/pediatric cardiopulmonary bypass circuits.
    Wang S; Rosenthal T; Kunselman AR; Ündar A
    Artif Organs; 2015 Jan; 39(1):43-52. PubMed ID: 25626579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Testing neonate-infant membrane oxygenators with the University of Texas neonatal pulsatile cardiopulmonary bypass system in vitro.
    Undar A; Holland MC; Howelton RV; Benson CK; Ybarra JR; Miller OL; Rossbach MM; Runge TM; Johnson SB; Sako EY; Calhoon JH
    Perfusion; 1998 Sep; 13(5):346-52. PubMed ID: 9778720
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deleterious effects of cardiopulmonary bypass. A prospective study of bubble versus membrane oxygenation.
    van Oeveren W; Kazatchkine MD; Descamps-Latscha B; Maillet F; Fischer E; Carpentier A; Wildevuur CR
    J Thorac Cardiovasc Surg; 1985 Jun; 89(6):888-99. PubMed ID: 3158783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perfluorocarbon oxygen transport. A comparative study of four oxygenator designs.
    Ferguson ER; Clymer JJ; Spruell RD; Holman WL
    ASAIO J; 1994; 40(3):M649-53. PubMed ID: 8555594
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.