These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 12470692)

  • 1. A theory of cognitive control, aging cognition, and neuromodulation.
    Braver TS; Barch DM
    Neurosci Biobehav Rev; 2002 Nov; 26(7):809-17. PubMed ID: 12470692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A computational approach to prefrontal cortex, cognitive control and schizophrenia: recent developments and current challenges.
    Cohen JD; Braver TS; O'Reilly RC
    Philos Trans R Soc Lond B Biol Sci; 1996 Oct; 351(1346):1515-27. PubMed ID: 8941963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Context processing in older adults: evidence for a theory relating cognitive control to neurobiology in healthy aging.
    Braver TS; Barch DM; Keys BA; Carter CS; Cohen JD; Kaye JA; Janowsky JS; Taylor SF; Yesavage JA; Mumenthaler MS; Jagust WJ; Reed BR
    J Exp Psychol Gen; 2001 Dec; 130(4):746-63. PubMed ID: 11757878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrative neurocomputational perspectives on cognitive aging, neuromodulation, and representation.
    Li SC; Sikström S
    Neurosci Biobehav Rev; 2002 Nov; 26(7):795-808. PubMed ID: 12470691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational perspectives on neuromodulation of aging.
    Sikström S
    Acta Neurochir Suppl; 2007; 97(Pt 2):513-8. PubMed ID: 17691342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The principal features and mechanisms of dopamine modulation in the prefrontal cortex.
    Seamans JK; Yang CR
    Prog Neurobiol; 2004 Sep; 74(1):1-58. PubMed ID: 15381316
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuromodulation and aging: implications of aging neuronal gain control on cognition.
    Li SC; Rieckmann A
    Curr Opin Neurobiol; 2014 Dec; 29():148-58. PubMed ID: 25064177
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cognitive control, goal maintenance, and prefrontal function in healthy aging.
    Paxton JL; Barch DM; Racine CA; Braver TS
    Cereb Cortex; 2008 May; 18(5):1010-28. PubMed ID: 17804479
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An application of prefrontal cortex function theory to cognitive aging.
    West RL
    Psychol Bull; 1996 Sep; 120(2):272-92. PubMed ID: 8831298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct control networks for cognition and emotion in the prefrontal cortex.
    Kompus K; Hugdahl K; Ohman A; Marklund P; Nyberg L
    Neurosci Lett; 2009 Dec; 467(2):76-80. PubMed ID: 19818382
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolating the neural mechanisms of age-related changes in human working memory.
    Rypma B; D'Esposito M
    Nat Neurosci; 2000 May; 3(5):509-15. PubMed ID: 10769393
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neuromodulation of Prefrontal Cortex in Non-Human Primates by Dopaminergic Receptors during Rule-Guided Flexible Behavior and Cognitive Control.
    Vijayraghavan S; Major AJ; Everling S
    Front Neural Circuits; 2017; 11():91. PubMed ID: 29259545
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cognition and control in schizophrenia: a computational model of dopamine and prefrontal function.
    Braver TS; Barch DM; Cohen JD
    Biol Psychiatry; 1999 Aug; 46(3):312-28. PubMed ID: 10435197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cognition in schizophrenia: core psychological and neural mechanisms.
    Barch DM; Ceaser A
    Trends Cogn Sci; 2012 Jan; 16(1):27-34. PubMed ID: 22169777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The neural bases of proactive and reactive control processes in normal aging.
    Manard M; François S; Phillips C; Salmon E; Collette F
    Behav Brain Res; 2017 Mar; 320():504-516. PubMed ID: 27784627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aging Affects Dopaminergic Neural Mechanisms of Cognitive Flexibility.
    Berry AS; Shah VD; Baker SL; Vogel JW; O'Neil JP; Janabi M; Schwimmer HD; Marks SM; Jagust WJ
    J Neurosci; 2016 Dec; 36(50):12559-12569. PubMed ID: 27807030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term mild-intensity exercise regimen preserves prefrontal cortical volume against aging.
    Tamura M; Nemoto K; Kawaguchi A; Kato M; Arai T; Kakuma T; Mizukami K; Matsuda H; Soya H; Asada T
    Int J Geriatr Psychiatry; 2015 Jul; 30(7):686-94. PubMed ID: 25353992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disruption of large-scale brain systems in advanced aging.
    Andrews-Hanna JR; Snyder AZ; Vincent JL; Lustig C; Head D; Raichle ME; Buckner RL
    Neuron; 2007 Dec; 56(5):924-35. PubMed ID: 18054866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Altered Prefrontal Excitation/Inhibition Balance and Prefrontal Output: Markers of Aging in Human Memory Networks.
    Legon W; Punzell S; Dowlati E; Adams SE; Stiles AB; Moran RJ
    Cereb Cortex; 2016 Oct; 26(11):4315-4326. PubMed ID: 26400915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-function correlates of cognitive decline in aging.
    Persson J; Nyberg L; Lind J; Larsson A; Nilsson LG; Ingvar M; Buckner RL
    Cereb Cortex; 2006 Jul; 16(7):907-15. PubMed ID: 16162855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.