These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 12471032)
1. Molecular sensing of bacteria in plants. The highly conserved RNA-binding motif RNP-1 of bacterial cold shock proteins is recognized as an elicitor signal in tobacco. Felix G; Boller T J Biol Chem; 2003 Feb; 278(8):6201-8. PubMed ID: 12471032 [TBL] [Abstract][Full Text] [Related]
2. Mutational analysis of the putative nucleic acid-binding surface of the cold-shock domain, CspB, revealed an essential role of aromatic and basic residues in binding of single-stranded DNA containing the Y-box motif. Schröder K; Graumann P; Schnuchel A; Holak TA; Marahiel MA Mol Microbiol; 1995 May; 16(4):699-708. PubMed ID: 7476164 [TBL] [Abstract][Full Text] [Related]
3. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Zipfel C; Kunze G; Chinchilla D; Caniard A; Jones JD; Boller T; Felix G Cell; 2006 May; 125(4):749-60. PubMed ID: 16713565 [TBL] [Abstract][Full Text] [Related]
4. New type III effectors from Xanthomonas campestris pv. vesicatoria trigger plant reactions dependent on a conserved N-myristoylation motif. Thieme F; Szczesny R; Urban A; Kirchner O; Hause G; Bonas U Mol Plant Microbe Interact; 2007 Oct; 20(10):1250-61. PubMed ID: 17918627 [TBL] [Abstract][Full Text] [Related]
5. The conserved Xanthomonas campestris pv. vesicatoria effector protein XopX is a virulence factor and suppresses host defense in Nicotiana benthamiana. Metz M; Dahlbeck D; Morales CQ; Al Sady B; Clark ET; Staskawicz BJ Plant J; 2005 Mar; 41(6):801-14. PubMed ID: 15743446 [TBL] [Abstract][Full Text] [Related]
6. RNP-1, an RNA-binding motif is conserved in the DNA-binding cold shock domain. Landsman D Nucleic Acids Res; 1992 Jun; 20(11):2861-4. PubMed ID: 1614871 [TBL] [Abstract][Full Text] [Related]
7. Xanthomonas campestris cell-cell signalling molecule DSF (diffusible signal factor) elicits innate immunity in plants and is suppressed by the exopolysaccharide xanthan. Kakkar A; Nizampatnam NR; Kondreddy A; Pradhan BB; Chatterjee S J Exp Bot; 2015 Nov; 66(21):6697-714. PubMed ID: 26248667 [TBL] [Abstract][Full Text] [Related]
8. Endocytosis of Xanthomonas campestris pathovar campestris lipopolysaccharides in non-host plant cells of Nicotiana tabacum. Gross A; Kapp D; Nielsen T; Niehaus K New Phytol; 2005 Jan; 165(1):215-26. PubMed ID: 15720635 [TBL] [Abstract][Full Text] [Related]
9. Identification of the bacterial superoxide dismutase (SodM) as plant-inducible elicitor of an oxidative burst reaction in tobacco cell suspension cultures. Watt SA; Tellström V; Patschkowski T; Niehaus K J Biotechnol; 2006 Oct; 126(1):78-86. PubMed ID: 16603270 [TBL] [Abstract][Full Text] [Related]
10. Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins. Chaikam V; Karlson DT BMB Rep; 2010 Jan; 43(1):1-8. PubMed ID: 20132728 [TBL] [Abstract][Full Text] [Related]
11. Structure and function of cold shock proteins in archaea. Giaquinto L; Curmi PM; Siddiqui KS; Poljak A; DeLong E; DasSarma S; Cavicchioli R J Bacteriol; 2007 Aug; 189(15):5738-48. PubMed ID: 17545280 [TBL] [Abstract][Full Text] [Related]
12. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance. Chang YH; Yan HZ; Liou RF Mol Plant Pathol; 2015 Feb; 16(2):123-36. PubMed ID: 24965864 [TBL] [Abstract][Full Text] [Related]
13. Molecular characterization and expression of the Erwinia carotovora hrpNEcc gene, which encodes an elicitor of the hypersensitive reaction. Mukherjee A; Cui Y; Liu Y; Chatterjee AK Mol Plant Microbe Interact; 1997 May; 10(4):462-71. PubMed ID: 9150595 [TBL] [Abstract][Full Text] [Related]
14. The NMR solution structures of the five constituent cold-shock domains (CSD) of the human UNR (upstream of N-ras) protein. Goroncy AK; Koshiba S; Tochio N; Tomizawa T; Inoue M; Watanabe S; Harada T; Tanaka A; Ohara O; Kigawa T; Yokoyama S J Struct Funct Genomics; 2010 Jun; 11(2):181-8. PubMed ID: 20213426 [TBL] [Abstract][Full Text] [Related]
15. A luxR homolog, aviR, in Agrobacterium vitis is associated with induction of necrosis on grape and a hypersensitive response on tobacco. Zheng D; Zhang H; Carle S; Hao G; Holden MR; Burr TJ Mol Plant Microbe Interact; 2003 Jul; 16(7):650-8. PubMed ID: 12848431 [TBL] [Abstract][Full Text] [Related]
16. Molecular cloning and expression of a new class of ortho-diphenol-O-methyltransferases induced in tobacco (Nicotiana tabacum L.) leaves by infection or elicitor treatment. Pellegrini L; Geoffroy P; Fritig B; Legrand M Plant Physiol; 1993 Oct; 103(2):509-17. PubMed ID: 7518088 [TBL] [Abstract][Full Text] [Related]
17. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Felix G; Duran JD; Volko S; Boller T Plant J; 1999 May; 18(3):265-76. PubMed ID: 10377992 [TBL] [Abstract][Full Text] [Related]
18. Isolation and characterization of a locus from Azospirillum brasilense Sp7 that complements the tumorigenic defect of Agrobacterium tumefaciens chvB mutant. Raina S; Raina R; Venkatesh TV; Das HK Mol Plant Microbe Interact; 1995; 8(2):322-6. PubMed ID: 7756697 [TBL] [Abstract][Full Text] [Related]
19. Homology between the HrpO protein of Pseudomonas solanacearum and bacterial proteins implicated in a signal peptide-independent secretion mechanism. Gough CL; Genin S; Lopes V; Boucher CA Mol Gen Genet; 1993 Jun; 239(3):378-92. PubMed ID: 8316211 [TBL] [Abstract][Full Text] [Related]
20. Role of the Agrobacterium tumefaciens VirD2 protein in T-DNA transfer and integration. Mysore KS; Bassuner B; Deng XB; Darbinian NS; Motchoulski A; Ream W; Gelvin SB Mol Plant Microbe Interact; 1998 Jul; 11(7):668-83. PubMed ID: 9650299 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]