These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
672 related articles for article (PubMed ID: 12471595)
1. Protein-based virtual screening of chemical databases. II. Are homology models of G-Protein Coupled Receptors suitable targets? Bissantz C; Bernard P; Hibert M; Rognan D Proteins; 2003 Jan; 50(1):5-25. PubMed ID: 12471595 [TBL] [Abstract][Full Text] [Related]
2. Virtual screening of biogenic amine-binding G-protein coupled receptors: comparative evaluation of protein- and ligand-based virtual screening protocols. Evers A; Hessler G; Matter H; Klabunde T J Med Chem; 2005 Aug; 48(17):5448-65. PubMed ID: 16107144 [TBL] [Abstract][Full Text] [Related]
3. PREDICT modeling and in-silico screening for G-protein coupled receptors. Shacham S; Marantz Y; Bar-Haim S; Kalid O; Warshaviak D; Avisar N; Inbal B; Heifetz A; Fichman M; Topf M; Naor Z; Noiman S; Becker OM Proteins; 2004 Oct; 57(1):51-86. PubMed ID: 15326594 [TBL] [Abstract][Full Text] [Related]
4. Molecular modeling of the second extracellular loop of G-protein coupled receptors and its implication on structure-based virtual screening. de Graaf C; Foata N; Engkvist O; Rognan D Proteins; 2008 May; 71(2):599-620. PubMed ID: 17972285 [TBL] [Abstract][Full Text] [Related]
5. Molecular modeling of A1 and A2A adenosine receptors: comparison of rhodopsin- and beta2-adrenergic-based homology models through the docking studies. Yuzlenko O; Kieć-Kononowicz K J Comput Chem; 2009 Jan; 30(1):14-32. PubMed ID: 18496794 [TBL] [Abstract][Full Text] [Related]
6. Structure-based drug discovery using GPCR homology modeling: successful virtual screening for antagonists of the alpha1A adrenergic receptor. Evers A; Klabunde T J Med Chem; 2005 Feb; 48(4):1088-97. PubMed ID: 15715476 [TBL] [Abstract][Full Text] [Related]
7. Homology model-based virtual screening for GPCR ligands using docking and target-biased scoring. Radestock S; Weil T; Renner S J Chem Inf Model; 2008 May; 48(5):1104-17. PubMed ID: 18442221 [TBL] [Abstract][Full Text] [Related]
8. Toward the active conformations of rhodopsin and the beta2-adrenergic receptor. Gouldson PR; Kidley NJ; Bywater RP; Psaroudakis G; Brooks HD; Diaz C; Shire D; Reynolds CA Proteins; 2004 Jul; 56(1):67-84. PubMed ID: 15162487 [TBL] [Abstract][Full Text] [Related]
9. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors. Bhattacharya S; Hall SE; Vaidehi N J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482 [TBL] [Abstract][Full Text] [Related]
10. Prediction of interfaces for oligomerizations of G-protein coupled receptors. Nemoto W; Toh H Proteins; 2005 Feb; 58(3):644-60. PubMed ID: 15593372 [TBL] [Abstract][Full Text] [Related]
11. Analysis of interactions responsible for vasopressin binding to human neurohypophyseal hormone receptors-molecular dynamics study of the activated receptor-vasopressin-G(alpha) systems. Slusarz MJ; Giełdoń A; Slusarz R; Ciarkowski J J Pept Sci; 2006 Mar; 12(3):180-9. PubMed ID: 16114100 [TBL] [Abstract][Full Text] [Related]
12. Drug design strategies for targeting G-protein-coupled receptors. Klabunde T; Hessler G Chembiochem; 2002 Oct; 3(10):928-44. PubMed ID: 12362358 [TBL] [Abstract][Full Text] [Related]
13. Discovery of novel chemotypes to a G-protein-coupled receptor through ligand-steered homology modeling and structure-based virtual screening. Cavasotto CN; Orry AJ; Murgolo NJ; Czarniecki MF; Kocsi SA; Hawes BE; O'Neill KA; Hine H; Burton MS; Voigt JH; Abagyan RA; Bayne ML; Monsma FJ J Med Chem; 2008 Feb; 51(3):581-8. PubMed ID: 18198821 [TBL] [Abstract][Full Text] [Related]
14. Activation of the ghrelin receptor is described by a privileged collective motion: a model for constitutive and agonist-induced activation of a sub-class A G-protein coupled receptor (GPCR). Floquet N; M'Kadmi C; Perahia D; Gagne D; Bergé G; Marie J; Banères JL; Galleyrand JC; Fehrentz JA; Martinez J J Mol Biol; 2010 Jan; 395(4):769-84. PubMed ID: 19782690 [TBL] [Abstract][Full Text] [Related]
15. Modeling the similarity and divergence of dopamine D2-like receptors and identification of validated ligand-receptor complexes. Boeckler F; Lanig H; Gmeiner P J Med Chem; 2005 Feb; 48(3):694-709. PubMed ID: 15689154 [TBL] [Abstract][Full Text] [Related]
16. Sequence-derived three-dimensional pharmacophore models for G-protein-coupled receptors and their application in virtual screening. Klabunde T; Giegerich C; Evers A J Med Chem; 2009 May; 52(9):2923-32. PubMed ID: 19374402 [TBL] [Abstract][Full Text] [Related]
17. Simulations of a G protein-coupled receptor homology model predict dynamic features and a ligand binding site. Wolf S; Böckmann M; Höweler U; Schlitter J; Gerwert K FEBS Lett; 2008 Oct; 582(23-24):3335-42. PubMed ID: 18775703 [TBL] [Abstract][Full Text] [Related]
18. First pharmacophore model of CCR3 receptor antagonists and its homology model-assisted, stepwise virtual screening. Jain V; Saravanan P; Arvind A; Mohan CG Chem Biol Drug Des; 2011 May; 77(5):373-87. PubMed ID: 21284830 [TBL] [Abstract][Full Text] [Related]
19. High-throughput modeling of human G-protein coupled receptors: amino acid sequence alignment, three-dimensional model building, and receptor library screening. Bissantz C; Logean A; Rognan D J Chem Inf Comput Sci; 2004; 44(3):1162-76. PubMed ID: 15154786 [TBL] [Abstract][Full Text] [Related]
20. Catalytic site prediction and virtual screening of cytochrome P450 2D6 substrates by consideration of water and rescoring in automated docking. de Graaf C; Oostenbrink C; Keizers PH; van der Wijst T; Jongejan A; Vermeulen NP J Med Chem; 2006 Apr; 49(8):2417-30. PubMed ID: 16610785 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]