BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 12471600)

  • 1. Ion permeation through the gramicidin channel: atomically detailed modeling by the Stochastic Difference Equation.
    Siva K; Elber R
    Proteins; 2003 Jan; 50(1):63-80. PubMed ID: 12471600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using theory and simulation to understand permeation and selectivity in ion channels.
    Jakobsson E
    Methods; 1998 Mar; 14(3):342-51. PubMed ID: 9571089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetics of K+ permeability through Gramicidin A by forward-reverse steered molecular dynamics.
    De Fabritiis G; Coveney PV; Villà-Freixa J
    Proteins; 2008 Oct; 73(1):185-94. PubMed ID: 18412256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the dielectric barrier in narrow biological channels: a novel composite approach to modeling single-channel currents.
    Mamonov AB; Coalson RD; Nitzan A; Kurnikova MG
    Biophys J; 2003 Jun; 84(6):3646-61. PubMed ID: 12770873
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Framework models of ion permeation through membrane channels and the generalized King-Altman method.
    Mapes EJ; Schumaker MF
    Bull Math Biol; 2006 Oct; 68(7):1429-60. PubMed ID: 16868853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized Langevin models of molecular dynamics simulations with applications to ion channels.
    Gordon D; Krishnamurthy V; Chung SH
    J Chem Phys; 2009 Oct; 131(13):134102. PubMed ID: 19814538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Realistic simulations of proton transport along the gramicidin channel: demonstrating the importance of solvation effects.
    Braun-Sand S; Burykin A; Chu ZT; Warshel A
    J Phys Chem B; 2005 Jan; 109(1):583-92. PubMed ID: 16851050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noncontact dipole effects on channel permeation. VI. 5F- and 6F-Trp gramicidin channel currents.
    Cole CD; Frost AS; Thompson N; Cotten M; Cross TA; Busath DD
    Biophys J; 2002 Oct; 83(4):1974-86. PubMed ID: 12324416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noncontact dipole effects on channel permeation. IV. Kinetic model of 5F-Trp(13) gramicidin A currents.
    Thompson N; Thompson G; Cole CD; Cotten M; Cross TA; Busath DD
    Biophys J; 2001 Sep; 81(3):1245-54. PubMed ID: 11509341
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ion transport in the gramicidin channel: molecular dynamics study of single and double occupancy.
    Roux B; Prod'hom B; Karplus M
    Biophys J; 1995 Mar; 68(3):876-92. PubMed ID: 7538804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuum electrostatics fails to describe ion permeation in the gramicidin channel.
    Edwards S; Corry B; Kuyucak S; Chung SH
    Biophys J; 2002 Sep; 83(3):1348-60. PubMed ID: 12202360
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Physical origin of selectivity in ionic channels of biological membranes.
    Laio A; Torre V
    Biophys J; 1999 Jan; 76(1 Pt 1):129-48. PubMed ID: 9876129
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semi-Markov models for brownian dynamics permeation in biological ion channels.
    Krishnamurthy V; Luk KY
    IEEE/ACM Trans Comput Biol Bioinform; 2011; 8(1):273-81. PubMed ID: 21071815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stochastic theory of ion movement in channels with single-ion occupancy. Application to sodium permeation of gramicidin channels.
    Jakobsson E; Chiu SW
    Biophys J; 1987 Jul; 52(1):33-45. PubMed ID: 2440492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The nature of ion and water barrier crossings in a simulated ion channel.
    Chiu SW; Novotny JA; Jakobsson E
    Biophys J; 1993 Jan; 64(1):98-109. PubMed ID: 7679301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using stochastic models calibrated from nanosecond nonequilibrium simulations to approximate mesoscale information.
    Calderon CP; Janosi L; Kosztin I
    J Chem Phys; 2009 Apr; 130(14):144908. PubMed ID: 19368472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Permeation in ion channels: the interplay of structure and theory.
    Miloshevsky GV; Jordan PC
    Trends Neurosci; 2004 Jun; 27(6):308-14. PubMed ID: 15165734
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of protein flexibility in ion permeation: a case study in gramicidin A.
    Baştuğ T; Gray-Weale A; Patra SM; Kuyucak S
    Biophys J; 2006 Apr; 90(7):2285-96. PubMed ID: 16415054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional Poisson-Nernst-Planck theory studies: influence of membrane electrostatics on gramicidin A channel conductance.
    Cárdenas AE; Coalson RD; Kurnikova MG
    Biophys J; 2000 Jul; 79(1):80-93. PubMed ID: 10866939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics simulations of gramicidin A in a lipid bilayer: from structure-function relations to force fields.
    Baştuğ T; Patra SM; Kuyucak S
    Chem Phys Lipids; 2006 Jun; 141(1-2):197-204. PubMed ID: 16600199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.