These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 12472900)

  • 21. Orphanin FQ/nociceptin and naloxone benzoylhydrazone activate distinct receptors in BE(2)-C human neuroblastoma cells.
    Mathis JP; Mandyam CD; Altememi GF; Pasternak GW; Standifer KM
    Neurosci Lett; 2001 Feb; 299(3):173-6. PubMed ID: 11165763
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nociceptin/orphanin FQ and the opioid receptor-like ORL1 receptor.
    Meunier JC
    Eur J Pharmacol; 1997 Dec; 340(1):1-15. PubMed ID: 9527501
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Different domains of the ORL1 and kappa-opioid receptors are involved in recognition of nociceptin and dynorphin A.
    Lapalu S; Moisand C; Butour JL; Mollereau C; Meunier JC
    FEBS Lett; 1998 May; 427(2):296-300. PubMed ID: 9607332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure-activity studies on nociceptin analogues: ORL1 receptor binding and biological activity of cyclic disulfide-containing analogues of nociceptin peptides.
    Ambo A; Hamazaki N; Yamada Y; Nakata E; Sasaki Y
    J Med Chem; 2001 Nov; 44(23):4015-8. PubMed ID: 11689089
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Heterodimerization of ORL1 and opioid receptors and its consequences for N-type calcium channel regulation.
    Evans RM; You H; Hameed S; Altier C; Mezghrani A; Bourinet E; Zamponi GW
    J Biol Chem; 2010 Jan; 285(2):1032-40. PubMed ID: 19887453
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cloning, pharmacological characterization and tissue distribution of an ORL1 opioid receptor from an amphibian, the rough-skinned newt Taricha granulosa.
    Walthers EA; Bradford CS; Moore FL
    J Mol Endocrinol; 2005 Feb; 34(1):247-56. PubMed ID: 15691892
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ligands for kappa-opioid and ORL1 receptors identified from a conformationally constrained peptide combinatorial library.
    Becker JA; Wallace A; Garzon A; Ingallinella P; Bianchi E; Cortese R; Simonin F; Kieffer BL; Pessi A
    J Biol Chem; 1999 Sep; 274(39):27513-22. PubMed ID: 10488086
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Specific affinity-labeling of the nociceptin ORL1 receptor using a thiol-activated Cys(Npys)-containing peptide ligand.
    Matsushima A; Nishimura H; Matsuyama Y; Liu X; Costa T; Shimohigashi Y
    Biopolymers; 2016 Nov; 106(4):460-9. PubMed ID: 27271345
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Altered adenylyl cyclase responsiveness subsequent to point mutations of Asp 128 in the third transmembrane domain of the delta-opioid receptor.
    Cavalli A; Babey AM; Loh HH
    Neuroscience; 1999; 93(3):1025-31. PubMed ID: 10473267
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Determinants of ligand selectivity at the kappa-receptor based on the structure of the orphanin FQ receptor.
    Owens CE; Akil H
    J Pharmacol Exp Ther; 2002 Mar; 300(3):992-9. PubMed ID: 11861808
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro and in vivo pharmacological characterization of J-113397, a potent and selective non-peptidyl ORL1 receptor antagonist.
    Ozaki S; Kawamoto H; Itoh Y; Miyaji M; Azuma T; Ichikawa D; Nambu H; Iguchi T; Iwasawa Y; Ohta H
    Eur J Pharmacol; 2000 Aug; 402(1-2):45-53. PubMed ID: 10940356
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dominant-negative activity of an alpha(1B)-adrenergic receptor signal-inactivating point mutation.
    Chen S; Lin F; Xu M; Hwa J; Graham RM
    EMBO J; 2000 Aug; 19(16):4265-71. PubMed ID: 10944109
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular modelling of the ORL1 receptor and its complex with nociceptin.
    Topham CM; Moulédous L; Poda G; Maigret B; Meunier JC
    Protein Eng; 1998 Dec; 11(12):1163-79. PubMed ID: 9930666
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Binding and GTPgammaS autoradiographic analysis of preproorphanin precursor peptide products at the ORL1 and opioid receptors.
    Neal CR; Owens CE; Taylor LP; Hoversten MT; Akil H; Watson SJ
    J Chem Neuroanat; 2003 Jul; 25(4):233-47. PubMed ID: 12842269
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pharmacological characterization of the novel nonpeptide orphanin FQ/nociceptin receptor agonist Ro 64-6198: rapid and reversible desensitization of the ORL1 receptor in vitro and lack of tolerance in vivo.
    Dautzenberg FM; Wichmann J; Higelin J; Py-Lang G; Kratzeisen C; Malherbe P; Kilpatrick GJ; Jenck F
    J Pharmacol Exp Ther; 2001 Aug; 298(2):812-9. PubMed ID: 11454946
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional expression, activation and desensitization of opioid receptor-like receptor ORL1 in neuroblastoma x glioma NG108-15 hybrid cells.
    Ma L; Cheng ZJ; Fan GH; Cai YC; Jiang LZ; Pei G
    FEBS Lett; 1997 Feb; 403(1):91-4. PubMed ID: 9038367
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Autoradiography of opioid and ORL1 ligands in opioid receptor triple knockout mice.
    Clarke S; Czyzyk T; Ansonoff M; Nitsche JF; Hsu MS; Nilsson L; Larsson K; Borsodi A; Toth G; Hill R; Kitchen I; Pintar JE
    Eur J Neurosci; 2002 Nov; 16(9):1705-12. PubMed ID: 12431223
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Creating a functional opioid alkaloid binding site in the orphanin FQ receptor through site-directed mutagenesis.
    Meng F; Ueda Y; Hoversten MT; Taylor LP; Reinscheid RK; Monsma FJ; Watson SJ; Civelli O; Akil H
    Mol Pharmacol; 1998 Apr; 53(4):772-7. PubMed ID: 9547370
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heterodimerization of opioid receptor-like 1 and mu-opioid receptors impairs the potency of micro receptor agonist.
    Wang HL; Hsu CY; Huang PC; Kuo YL; Li AH; Yeh TH; Tso AS; Chen YL
    J Neurochem; 2005 Mar; 92(6):1285-94. PubMed ID: 15748148
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Further evidence that the CCK2 receptor is coupled to two transduction pathways using site-directed mutagenesis.
    Pommier B; Marie-Claire C; Da Nascimento S; Wang HL; Roques BP; Noble F
    J Neurochem; 2003 Apr; 85(2):454-61. PubMed ID: 12675921
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.