These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
513 related articles for article (PubMed ID: 12473451)
1. Interconversion of ATP binding and conformational free energies by tryptophanyl-tRNA synthetase: structures of ATP bound to open and closed, pre-transition-state conformations. Retailleau P; Huang X; Yin Y; Hu M; Weinreb V; Vachette P; Vonrhein C; Bricogne G; Roversi P; Ilyin V; Carter CW J Mol Biol; 2003 Jan; 325(1):39-63. PubMed ID: 12473451 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure of tryptophanyl-tRNA synthetase complexed with adenosine-5' tetraphosphate: evidence for distributed use of catalytic binding energy in amino acid activation by class I aminoacyl-tRNA synthetases. Retailleau P; Weinreb V; Hu M; Carter CW J Mol Biol; 2007 May; 369(1):108-28. PubMed ID: 17428498 [TBL] [Abstract][Full Text] [Related]
3. Computational studies of tryptophanyl-tRNA synthetase: activation of ATP by induced-fit. Kapustina M; Carter CW J Mol Biol; 2006 Oct; 362(5):1159-80. PubMed ID: 16949606 [TBL] [Abstract][Full Text] [Related]
4. Structures of tryptophanyl-tRNA synthetase II from Deinococcus radiodurans bound to ATP and tryptophan. Insight into subunit cooperativity and domain motions linked to catalysis. Buddha MR; Crane BR J Biol Chem; 2005 Sep; 280(36):31965-73. PubMed ID: 15998643 [TBL] [Abstract][Full Text] [Related]
5. Selective Inhibition of Bacterial Tryptophanyl-tRNA Synthetases by Indolmycin Is Mechanism-based. Williams TL; Yin YW; Carter CW J Biol Chem; 2016 Jan; 291(1):255-65. PubMed ID: 26555258 [TBL] [Abstract][Full Text] [Related]
7. 2.9 A crystal structure of ligand-free tryptophanyl-tRNA synthetase: domain movements fragment the adenine nucleotide binding site. Ilyin VA; Temple B; Hu M; Li G; Yin Y; Vachette P; Carter CW Protein Sci; 2000 Feb; 9(2):218-31. PubMed ID: 10716174 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of human tryptophanyl-tRNA synthetase catalytic fragment: insights into substrate recognition, tRNA binding, and angiogenesis activity. Yu Y; Liu Y; Shen N; Xu X; Xu F; Jia J; Jin Y; Arnold E; Ding J J Biol Chem; 2004 Feb; 279(9):8378-88. PubMed ID: 14660560 [TBL] [Abstract][Full Text] [Related]
9. Quantitative analysis of crystal growth. Tryptophanyl-tRNA synthetase crystal polymorphism and its relationship to catalysis. Carter CW; Doublié S; Coleman DE J Mol Biol; 1994 May; 238(3):346-65. PubMed ID: 8176729 [TBL] [Abstract][Full Text] [Related]
10. A concerted tryptophanyl-adenylate-dependent conformational change in Bacillus subtilis tryptophanyl-tRNA synthetase revealed by the fluorescence of Trp92. Hogue CW; Doublié S; Xue H; Wong JT; Carter CW; Szabo AG J Mol Biol; 1996 Jul; 260(3):446-66. PubMed ID: 8757806 [TBL] [Abstract][Full Text] [Related]
11. Catalytic mechanism of the tryptophan activation reaction revealed by crystal structures of human tryptophanyl-tRNA synthetase in different enzymatic states. Shen N; Zhou M; Yang B; Yu Y; Dong X; Ding J Nucleic Acids Res; 2008 Mar; 36(4):1288-99. PubMed ID: 18180246 [TBL] [Abstract][Full Text] [Related]
12. Escherichia coli tryptophanyl-tRNA synthetase mutants selected for tryptophan auxotrophy implicate the dimer interface in optimizing amino acid binding. Sever S; Rogers K; Rogers MJ; Carter C; Söll D Biochemistry; 1996 Jan; 35(1):32-40. PubMed ID: 8555191 [TBL] [Abstract][Full Text] [Related]
13. A conformational transition state accompanies tryptophan activation by B. stearothermophilus tryptophanyl-tRNA synthetase. Kapustina M; Weinreb V; Li L; Kuhlman B; Carter CW Structure; 2007 Oct; 15(10):1272-84. PubMed ID: 17937916 [TBL] [Abstract][Full Text] [Related]
14. Tryptophanyl-tRNA synthetase mediates high-affinity tryptophan uptake into human cells. Miyanokoshi M; Yokosawa T; Wakasugi K J Biol Chem; 2018 Jun; 293(22):8428-8438. PubMed ID: 29666190 [TBL] [Abstract][Full Text] [Related]
15. Independent saturation of three TrpRS subsites generates a partially assembled state similar to those observed in molecular simulations. Laowanapiban P; Kapustina M; Vonrhein C; Delarue M; Koehl P; Carter CW Proc Natl Acad Sci U S A; 2009 Feb; 106(6):1790-5. PubMed ID: 19174517 [TBL] [Abstract][Full Text] [Related]
16. Mg2+-assisted catalysis by B. stearothermophilus TrpRS is promoted by allosteric effects. Weinreb V; Li L; Campbell CL; Kaguni LS; Carter CW Structure; 2009 Jul; 17(7):952-64. PubMed ID: 19604475 [TBL] [Abstract][Full Text] [Related]
17. Escapement mechanisms: Efficient free energy transduction by reciprocally-coupled gating. Carter CW Proteins; 2020 May; 88(5):710-717. PubMed ID: 31743491 [TBL] [Abstract][Full Text] [Related]
18. An unusual tryptophanyl tRNA synthetase interacts with nitric oxide synthase in Deinococcus radiodurans. Buddha MR; Keery KM; Crane BR Proc Natl Acad Sci U S A; 2004 Nov; 101(45):15881-6. PubMed ID: 15520379 [TBL] [Abstract][Full Text] [Related]
19. Mg2+-free Bacillus stearothermophilus tryptophanyl-tRNA synthetase retains a major fraction of the overall rate enhancement for tryptophan activation. Weinreb V; Carter CW J Am Chem Soc; 2008 Jan; 130(4):1488-94. PubMed ID: 18173270 [TBL] [Abstract][Full Text] [Related]
20. Role of lysine-195 in the KMSKS sequence of E. coli tryptophanyl-tRNA synthetase. Chan KW; Koeppe RE FEBS Lett; 1995 Apr; 363(1-2):33-6. PubMed ID: 7729548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]