These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 12473478)
1. Rapid reduction of Staphylococcus aureus populations on stainless steel surfaces by zeolite ceramic coatings containing silver and zinc ions. Bright KR; Gerba CP; Rusin PA J Hosp Infect; 2002 Dec; 52(4):307-9. PubMed ID: 12473478 [TBL] [Abstract][Full Text] [Related]
2. Rapid reduction of Legionella pneumophila on stainless steel with zeolite coatings containing silver and zinc ions. Rusin P; Bright K; Gerba C Lett Appl Microbiol; 2003; 36(2):69-72. PubMed ID: 12535123 [TBL] [Abstract][Full Text] [Related]
3. Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel. Cowan MM; Abshire KZ; Houk SL; Evans SM J Ind Microbiol Biotechnol; 2003 Feb; 30(2):102-6. PubMed ID: 12612784 [TBL] [Abstract][Full Text] [Related]
4. Inactivation of vegetative cells, but not spores, of Bacillus anthracis, B. cereus, and B. subtilis on stainless steel surfaces coated with an antimicrobial silver- and zinc-containing zeolite formulation. Galeano B; Korff E; Nicholson WL Appl Environ Microbiol; 2003 Jul; 69(7):4329-31. PubMed ID: 12839825 [TBL] [Abstract][Full Text] [Related]
5. Antibacterial effects of silver incorporated zeolite coatings on 3D printed porous stainless steels. Qing Y; Li K; Li D; Qin Y Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110430. PubMed ID: 31923959 [TBL] [Abstract][Full Text] [Related]
6. Survival of foodborne pathogens on stainless steel surfaces and cross-contamination to foods. Kusumaningrum HD; Riboldi G; Hazeleger WC; Beumer RR Int J Food Microbiol; 2003 Aug; 85(3):227-36. PubMed ID: 12878381 [TBL] [Abstract][Full Text] [Related]
7. Potential use of copper surfaces to reduce survival of epidemic meticillin-resistant Staphylococcus aureus in the healthcare environment. Noyce JO; Michels H; Keevil CW J Hosp Infect; 2006 Jul; 63(3):289-97. PubMed ID: 16650507 [TBL] [Abstract][Full Text] [Related]
8. Effectiveness of sanitation with quaternary ammonium compound or chlorine on stainless steel and other domestic food-preparation surfaces. Frank JF; Chmielewski RA J Food Prot; 1997 Jan; 60(1):43-7. PubMed ID: 10465039 [TBL] [Abstract][Full Text] [Related]
9. Antimicrobial effects of silver nanoparticles against bacterial cells adhered to stainless steel surfaces. Araújo EA; Andrade NJ; da Silva LH; Bernardes PC; de C Teixeira AV; de Sá JP; Fialho JF; Fernandes PE J Food Prot; 2012 Apr; 75(4):701-5. PubMed ID: 22488058 [TBL] [Abstract][Full Text] [Related]
10. Novel coating containing molybdenum oxide nanoparticles to reduce Staphylococcus aureus contamination on inanimate surfaces. Piçarra S; Lopes E; Almeida PL; de Lencastre H; Aires-de-Sousa M PLoS One; 2019; 14(3):e0213151. PubMed ID: 30883551 [TBL] [Abstract][Full Text] [Related]
11. Design of antibacterial surfaces by a combination of electrochemistry and controlled radical polymerization. Voccia S; Ignatova M; Jérôme R; Jérôme C Langmuir; 2006 Sep; 22(20):8607-13. PubMed ID: 16981783 [TBL] [Abstract][Full Text] [Related]
12. Effect of laser and environmental parameters on reducing microbial contamination of stainless steel surfaces with Nd:YAG laser irradiation. Watson IA; Wang RK; Peden I; Ward GD; Stewart-Tull DE; Wardlaw AC J Appl Microbiol; 2005; 99(4):934-44. PubMed ID: 16162246 [TBL] [Abstract][Full Text] [Related]
13. Antimicrobial activity of Ti-ZrN/Ag coatings for use in biomaterial applications. Slate AJ; Wickens DJ; El Mohtadi M; Dempsey-Hibbert N; West G; Banks CE; Whitehead KA Sci Rep; 2018 Jan; 8(1):1497. PubMed ID: 29367635 [TBL] [Abstract][Full Text] [Related]
14. Initial bacterial deposition on bare and zeolite-coated aluminum alloy and stainless steel. Chen G; Beving DE; Bedi RS; Yan YS; Walker SL Langmuir; 2009 Feb; 25(3):1620-6. PubMed ID: 19123799 [TBL] [Abstract][Full Text] [Related]
15. Survival of Listeria monocytogenes Scott A on metal surfaces: implications for cross-contamination. Wilks SA; Michels HT; Keevil CW Int J Food Microbiol; 2006 Sep; 111(2):93-8. PubMed ID: 16876278 [TBL] [Abstract][Full Text] [Related]
16. Inhibitory effects of UV treatment and a combination of UV and dry heat against pathogens on stainless steel and polypropylene surfaces. Bae YM; Lee SY J Food Sci; 2012 Jan; 77(1):M61-4. PubMed ID: 22132742 [TBL] [Abstract][Full Text] [Related]
17. Antimicrobial activity of nanocomposite zirconium nitride/silver coatings to combat external bone fixation pin infections. Wickens DJ; West G; Kelly PJ; Verran J; Lynch S; Whitehead KA Int J Artif Organs; 2012 Oct; 35(10):817-25. PubMed ID: 23138705 [TBL] [Abstract][Full Text] [Related]
18. Activation of antibacterial silver coatings on surgical implants by direct current: preliminary studies in rabbits. Colmano G; Edwards SS; Barranco SD Am J Vet Res; 1980 Jun; 41(6):964-6. PubMed ID: 7436092 [TBL] [Abstract][Full Text] [Related]
19. Effects of surface contamination and cleaning with hypochlorite wipes on the antibacterial activity of copper-alloyed antibacterial stainless steel. Kawakami H; Hayashi T; Nishikubo H; Morikawa A; Suzuki S; Sato Y; Kikuchi Y Biocontrol Sci; 2014; 19(2):73-8. PubMed ID: 24975410 [TBL] [Abstract][Full Text] [Related]
20. Resistance of pathogenic bacteria on the surface of stainless steel depending on attachment form and efficacy of chemical sanitizers. Bae YM; Baek SY; Lee SY Int J Food Microbiol; 2012 Feb; 153(3):465-73. PubMed ID: 22225983 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]