These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 12473668)
1. Spectroscopic characterization of the electronic changes in the active site of Streptomyces antibioticus tyrosinase upon binding of transition state analogue inhibitors. Bubacco L; Van Gastel M; Groenen EJ; Vijgenboom E; Canters GW J Biol Chem; 2003 Feb; 278(9):7381-9. PubMed ID: 12473668 [TBL] [Abstract][Full Text] [Related]
2. EPR study of the dinuclear active copper site of tyrosinase from Streptomyces antibioticus. van Gastel M; Bubacco L; Groenen EJ; Vijgenboom E; Canters GW FEBS Lett; 2000 Jun; 474(2-3):228-32. PubMed ID: 10838090 [TBL] [Abstract][Full Text] [Related]
3. X-ray absorption analysis of the active site of Streptomyces antibioticus Tyrosinase upon binding of transition state analogue inhibitors. Bubacco L; Spinazze R; della Longa S; Benfatto M Arch Biochem Biophys; 2007 Sep; 465(2):320-7. PubMed ID: 17698026 [TBL] [Abstract][Full Text] [Related]
4. Interaction between the type-3 copper protein tyrosinase and the substrate analogue p-nitrophenol studied by NMR. Tepper AW; Bubacco L; Canters GW J Am Chem Soc; 2005 Jan; 127(2):567-75. PubMed ID: 15643881 [TBL] [Abstract][Full Text] [Related]
5. Paramagnetic properties of the halide-bound derivatives of oxidised tyrosinase investigated by 1H NMR spectroscopy. Tepper AW; Bubacco L; Canters GW Chemistry; 2006 Oct; 12(29):7668-75. PubMed ID: 16927257 [TBL] [Abstract][Full Text] [Related]
6. Structural basis and mechanism of the inhibition of the type-3 copper protein tyrosinase from Streptomyces antibioticus by halide ions. Tepper AW; Bubacco L; Canters GW J Biol Chem; 2002 Aug; 277(34):30436-44. PubMed ID: 12048185 [TBL] [Abstract][Full Text] [Related]
8. Investigation of Streptomyces antibioticus tyrosinase reactivity toward chlorophenols. Marino SM; Fogal S; Bisaglia M; Moro S; Scartabelli G; De Gioia L; Spada A; Monzani E; Casella L; Mammi S; Bubacco L Arch Biochem Biophys; 2011 Jan; 505(1):67-74. PubMed ID: 20875779 [TBL] [Abstract][Full Text] [Related]
9. Oxygen binding to tyrosinase from streptomyces antibioticus studied by laser flash photolysis. Hirota S; Kawahara T; Lonardi E; de Waal E; Funasaki N; Canters GW J Am Chem Soc; 2005 Dec; 127(51):17966-7. PubMed ID: 16366523 [TBL] [Abstract][Full Text] [Related]
10. 1H NMR spectroscopy of the binuclear Cu(II) active site of Streptomyces antibioticus tyrosinase. Bubacco L; Salgado J; Tepper AW; Vijgenboom E; Canters GW FEBS Lett; 1999 Jan; 442(2-3):215-20. PubMed ID: 9929004 [TBL] [Abstract][Full Text] [Related]
11. Purification and spectroscopic studies on catechol oxidases from Lycopus europaeus and Populus nigra: evidence for a dinuclear copper center of type 3 and spectroscopic similarities to tyrosinase and hemocyanin. Rompel A; Fischer H; Meiwes D; Büldt-Karentzopoulos K; Dillinger R; Tuczek F; Witzel H; Krebs B J Biol Inorg Chem; 1999 Feb; 4(1):56-63. PubMed ID: 10499103 [TBL] [Abstract][Full Text] [Related]
12. Cu(II) coordination in arthropod and mollusk green half-methemocyanins analyzed by electron spin-echo envelope modulation spectroscopy. Magliozzo RS; Bubacco L; McCracken J; Jiang F; Beltramini M; Salvato B; Peisach J Biochemistry; 1995 Feb; 34(5):1513-23. PubMed ID: 7849010 [TBL] [Abstract][Full Text] [Related]
13. Trapping tyrosinase key active intermediate under turnover. Spada A; Palavicini S; Monzani E; Bubacco L; Casella L Dalton Trans; 2009 Sep; (33):6468-71. PubMed ID: 19672489 [TBL] [Abstract][Full Text] [Related]
14. Identification of copper ligands in Aspergillus oryzae tyrosinase by site-directed mutagenesis. Nakamura M; Nakajima T; Ohba Y; Yamauchi S; Lee BR; Ichishima E Biochem J; 2000 Sep; 350 Pt 2(Pt 2):537-45. PubMed ID: 10947969 [TBL] [Abstract][Full Text] [Related]
15. The versatile binding mode of transition-state analogue inhibitors of tyrosinase towards dicopper(II) model complexes: experimental and theoretical investigations. Orio M; Bochot C; Dubois C; Gellon G; Hardré R; Jamet H; Luneau D; Philouze C; Réglier M; Serratrice G; Belle C Chemistry; 2011 Nov; 17(48):13482-94. PubMed ID: 22025275 [TBL] [Abstract][Full Text] [Related]
16. A five-coordinate copper complex with superoxide dismutase mimetic activity from Streptomyces antibioticus. Schechinger T; Hiller W; Maichle C; Strähle J; Weser U Biol Met; 1988; 1(2):112-6. PubMed ID: 2856345 [TBL] [Abstract][Full Text] [Related]
17. Inulavosin and its benzo-derivatives, melanogenesis inhibitors, target the copper loading mechanism to the active site of tyrosinase. Fujita H; Menezes JC; Santos SM; Yokota S; Kamat SP; Cavaleiro JA; Motokawa T; Kato T; Mochizuki M; Fujiwara T; Fujii Y; Tanaka Y Pigment Cell Melanoma Res; 2014 May; 27(3):376-86. PubMed ID: 24479607 [TBL] [Abstract][Full Text] [Related]
18. First structures of an active bacterial tyrosinase reveal copper plasticity. Sendovski M; Kanteev M; Ben-Yosef VS; Adir N; Fishman A J Mol Biol; 2011 Jan; 405(1):227-37. PubMed ID: 21040728 [TBL] [Abstract][Full Text] [Related]
19. Tyrosinase/catecholoxidase activity of hemocyanins: structural basis and molecular mechanism. Decker H; Tuczek F Trends Biochem Sci; 2000 Aug; 25(8):392-7. PubMed ID: 10916160 [TBL] [Abstract][Full Text] [Related]
20. What are the structural features of the active site that define binuclear copper proteins function? Bubacco L; van Gastel M; Benfatto M; Tepper AW; Canters GW Micron; 2004; 35(1-2):143-5. PubMed ID: 15036320 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]