BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 12474113)

  • 41. Inactivation of dorsolateral striatum enhances sensitivity to changes in the action-outcome contingency in instrumental conditioning.
    Yin HH; Knowlton BJ; Balleine BW
    Behav Brain Res; 2006 Jan; 166(2):189-96. PubMed ID: 16153716
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of prefrontal cortex inactivation on behavioral and neurochemical abnormalities in rats with excitotoxic lesions of the entorhinal cortex.
    Uehara T; Sumiyoshi T; Matsuoka T; Itoh H; Kurachi M
    Synapse; 2007 Jun; 61(6):391-400. PubMed ID: 17372984
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Medial prefrontal cortex and precision of temporal discrimination: a lesion, microinjection, and microdialysis study.
    Hata T; Okaichi H
    Neurosci Res; 2004 May; 49(1):81-9. PubMed ID: 15099706
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Effect of central 5-hydroxytryptamine depletion on performance in the free-operant psychophysical procedure: facilitation of switching, but no effect on temporal differentiation of responding.
    Chiang TJ; Al-Ruwaitea AS; Ho MY; Bradshaw CM; Szabadi E
    Psychopharmacology (Berl); 1999 Apr; 143(2):166-73. PubMed ID: 10326779
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effects of acute and repeated administration of caffeine on temporal discounting in rats.
    Diller JW; Saunders BT; Anderson KG
    Pharmacol Biochem Behav; 2008 Jun; 89(4):546-55. PubMed ID: 18329086
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Modeling the dynamics of choice.
    Baum WM; Davison M
    Behav Processes; 2009 Jun; 81(2):189-94. PubMed ID: 19429211
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transitional and steady-state choice behavior under an adjusting-delay schedule.
    Torres LV; Araújo Sda C; Sanchez CM; Body S; Bradshaw CM; Szabadi E
    J Exp Anal Behav; 2011 Jan; 95(1):57-74. PubMed ID: 21541116
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Ketamine anaesthesia interferes with the quinolinic acid-induced lesion in a rat model of Huntington's disease.
    Jiang W; Büchele F; Papazoglou A; Döbrössy M; Nikkhah G
    J Neurosci Methods; 2009 May; 179(2):219-23. PubMed ID: 19428530
    [TBL] [Abstract][Full Text] [Related]  

  • 49. D-Amphetamine remediates attentional performance in rats with dorsal prefrontal lesions.
    Chudasama Y; Nathwani F; Robbins TW
    Behav Brain Res; 2005 Mar; 158(1):97-107. PubMed ID: 15680198
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Different functionality of the medial and orbital prefrontal cortex during a sexually motivated task in rats.
    Hernández-González M; Prieto-Beracoechea CA; Arteaga-Silva M; Guevara MA
    Physiol Behav; 2007 Feb; 90(2-3):450-8. PubMed ID: 17140612
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of delayed reinforcers on the behavior of an animal model of attention-deficit/hyperactivity disorder (ADHD).
    Johansen EB; Sagvolden T; Kvande G
    Behav Brain Res; 2005 Jul; 162(1):47-61. PubMed ID: 15922066
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Time-course analysis and comparison of acute and chronic intrastriatal quinolinic acid administration on forelimb reaching deficits in the rat.
    Bazzett T; Legnard E; Bauter MR; Albin RL
    Exp Neurol; 1999 Jul; 158(1):126-34. PubMed ID: 10448424
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influences of delay and rate of reinforcement on discrete-trial choice.
    Mazur JE; Snyderman M; Coe D
    J Exp Psychol Anim Behav Process; 1985 Oct; 11(4):565-75. PubMed ID: 4067510
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Fos expression in the prefrontal cortex and nucleus accumbens following exposure to retrospective timing tasks.
    Valencia Torres L; Olarte Sánchez CM; Body S; Fone KC; Bradshaw CM; Szabadi E
    Behav Neurosci; 2011 Apr; 125(2):202-14. PubMed ID: 21341886
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of d-amphetamine and MK-801 on impulsive choice: Modulation by schedule of reinforcement and delay length.
    Yates JR; Day HA; Evans KE; Igwe HO; Kappesser JL; Miller AL; Murray CP; Torline BT; Ellis AL; Stacy WL
    Behav Brain Res; 2019 Dec; 376():112228. PubMed ID: 31520689
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of acute and chronic administration of diazepam on delay discounting in Lewis and Fischer 344 rats.
    Huskinson SL; Anderson KG
    Behav Pharmacol; 2012 Aug; 23(4):315-30. PubMed ID: 22785382
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Study of impulsivity in rats under conditions of choice between food reinforcements of different values].
    Zaĭchenko MI; Merzhanova GKh
    Zh Vyssh Nerv Deiat Im I P Pavlova; 2010; 60(1):56-64. PubMed ID: 20352684
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dissociable effects of lesions to orbitofrontal cortex subregions on impulsive choice in the rat.
    Mar AC; Walker AL; Theobald DE; Eagle DM; Robbins TW
    J Neurosci; 2011 Apr; 31(17):6398-404. PubMed ID: 21525280
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Cocaine exposure causes long-term increases in impulsive choice.
    Simon NW; Mendez IA; Setlow B
    Behav Neurosci; 2007 Jun; 121(3):543-9. PubMed ID: 17592945
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Schedule-induced polydipsia in the spontaneously hypertensive rat and its relation to impulsive behaviour.
    Ibias J; Pellón R
    Behav Brain Res; 2011 Sep; 223(1):58-69. PubMed ID: 21540060
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.