These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 12474252)

  • 1. Preparation of a colored conductive paint electrode for electrochemical inactivation of bacteria.
    Lim TK; Murakami T; Tsuboi M; Yamashita K; Matsunaga T
    Biotechnol Bioeng; 2003 Feb; 81(3):299-304. PubMed ID: 12474252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of an electrochemical antifouling system for seawater cooling pipelines of power plants using titanium.
    Wake H; Takahashi H; Takimoto T; Takayanagi H; Ozawa K; Kadoi H; Okochi M; Matsunaga T
    Biotechnol Bioeng; 2006 Oct; 95(3):468-73. PubMed ID: 16752370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prevention of marine biofouling using a conductive paint electrode.
    Matsunaga T; Nakayama T; Wake H; Takahashi M; Okochi M; Nakamura N
    Biotechnol Bioeng; 1998 Aug; 59(3):374-8. PubMed ID: 10099349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of electric currents on bacterial detachment and inactivation.
    Hong SH; Jeong J; Shim S; Kang H; Kwon S; Ahn KH; Yoon J
    Biotechnol Bioeng; 2008 Jun; 100(2):379-86. PubMed ID: 18080346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enrichment of electrochemically active bacteria using a three-electrode electrochemical cell.
    Yoon SM; Choi CH; Kim M; Hyun MS; Shin SH; Yi DH; Kim HJ
    J Microbiol Biotechnol; 2007 Jan; 17(1):110-5. PubMed ID: 18051361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA deposition on carbon electrodes under controlled dc potentials.
    Lin X; Jiang X; Lu L
    Biosens Bioelectron; 2005 Mar; 20(9):1709-17. PubMed ID: 15681185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effects of conductivity and electrochemical doping on the reduction of methemoglobin immobilized in nanoparticulate TiO2 films.
    Milsom EV; Dash HA; Jenkins TA; Opallo M; Marken F
    Bioelectrochemistry; 2007 May; 70(2):221-7. PubMed ID: 17056301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biotinylated polypyrrole films: an easy electrochemical approach for the reagentless immobilization of bacteria on electrode surfaces.
    Da Silva S; Grosjean L; Ternan N; Mailley P; Livache T; Cosnier S
    Bioelectrochemistry; 2004 Jun; 63(1-2):297-301. PubMed ID: 15110291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron transfer process from marine biofilms to graphite electrodes in seawater.
    Xu F; Duan J; Hou B
    Bioelectrochemistry; 2010 Apr; 78(1):92-5. PubMed ID: 19840906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical polarization-induced changes in the growth of individual cells and biofilms of Pseudomonas fluorescens (ATCC 17552).
    Busalmen JP; de Sánchez SR
    Appl Environ Microbiol; 2005 Oct; 71(10):6235-40. PubMed ID: 16204543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cathodic behaviour of stainless steel in coastal Indian seawater: calcareous deposits overwhelm biofilms.
    Eashwar M; Subramanian G; Palanichamy S; Rajagopal G; Madhu S; Kamaraj P
    Biofouling; 2009; 25(3):191-201. PubMed ID: 19169951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular assembly of redox-conductive ferrocene-streptavidin conjugates--towards bio-electrochemical devices.
    Padeste C; Steiger B; Grubelnik A; Tiefenauer L
    Biosens Bioelectron; 2004 Oct; 20(3):545-52. PubMed ID: 15494238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First air-tolerant effective stainless steel microbial anode obtained from a natural marine biofilm.
    Erable B; Bergel A
    Bioresour Technol; 2009 Jul; 100(13):3302-7. PubMed ID: 19289272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of cyclic voltammetry to detect biofilms formed by Pseudomonas fluorescens on platinum electrodes.
    Vieira MJ; Pinho IA; Gião S; Montenegro MI
    Biofouling; 2003 Aug; 19(4):215-22. PubMed ID: 14626841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 2-Methoxy-2',4'-dichloro chalcone as an antimicrofoulant against marine bacterial biofilm.
    Sivakumar PM; Prabhawathi V; Doble M
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):439-46. PubMed ID: 20708908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laser impact assessment in a biofilm-forming bacterium Pseudoalteromonas carrageenovora using a flow cytometric system.
    Nandakumar K; Obika H; Shinozaki T; Ooie T; Utsumi A; Yano T
    Biotechnol Bioeng; 2003 May; 82(4):399-402. PubMed ID: 12632396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of electro-active biofilms.
    Erable B; Duţeanu NM; Ghangrekar MM; Dumas C; Scott K
    Biofouling; 2010 Jan; 26(1):57-71. PubMed ID: 20390557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Attachment of gold nanoparticles to glassy carbon electrode and its application for the direct electrochemistry and electrocatalytic behavior of hemoglobin.
    Zhang L; Jiang X; Wang E; Dong S
    Biosens Bioelectron; 2005 Aug; 21(2):337-45. PubMed ID: 16023961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Construction of biofilms with defined internal architecture using dielectrophoresis and flocculation.
    Verduzco-Luque CE; Alp B; Stephens GM; Markx GH
    Biotechnol Bioeng; 2003 Jul; 83(1):39-44. PubMed ID: 12740931
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Presence and effects of marine microbial biofilms on biocide-based antifouling paints.
    Yebra DM; Kiil S; Weinell CE; Dam-Johansen K
    Biofouling; 2006; 22(1-2):33-41. PubMed ID: 16551559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.