These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 12475037)

  • 1. Fluorescent nano-PEBBLE sensors designed for intracellular glucose imaging.
    Xu H; Aylott JW; Kopelman R
    Analyst; 2002 Nov; 127(11):1471-7. PubMed ID: 12475037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma.
    Xu H; Aylott JW; Kopelman R; Miller TJ; Philbert MA
    Anal Chem; 2001 Sep; 73(17):4124-33. PubMed ID: 11569801
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optochemical nanosensor PEBBLEs: photonic explorers for bioanalysis with biologically localized embedding.
    Buck SM; Koo YE; Park E; Xu H; Philbert MA; Brasuel MA; Kopelman R
    Curr Opin Chem Biol; 2004 Oct; 8(5):540-6. PubMed ID: 15450498
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A fluorescent PEBBLE nanosensor for intracellular free zinc.
    Sumner JP; Aylott JW; Monson E; Kopelman R
    Analyst; 2002 Jan; 127(1):11-6. PubMed ID: 11827375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time measurements of dissolved oxygen inside live cells by organically modified silicate fluorescent nanosensors.
    Koo YE; Cao Y; Kopelman R; Koo SM; Brasuel M; Philbert MA
    Anal Chem; 2004 May; 76(9):2498-505. PubMed ID: 15117189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generalized ratiometric fluorescence nanosensors based on carbon dots and an advanced chemometric model.
    Yan XF; Chen ZP; Huang Y; Kang C; Yu RQ
    Talanta; 2019 Jan; 192():233-240. PubMed ID: 30348383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors.
    Clark HA; Hoyer M; Philbert MA; Kopelman R
    Anal Chem; 1999 Nov; 71(21):4831-6. PubMed ID: 10565274
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells.
    Park EJ; Brasuel M; Behrend C; Philbert MA; Kopelman R
    Anal Chem; 2003 Aug; 75(15):3784-91. PubMed ID: 14572044
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical nanosensors for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors.
    Clark HA; Kopelman R; Tjalkens R; Philbert MA
    Anal Chem; 1999 Nov; 71(21):4837-43. PubMed ID: 10565275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative generalized ratiometric fluorescence spectroscopy for turbid media based on probe encapsulated by biologically localized embedding.
    Yan XF; Chen ZP; Cui YY; Hu YL; Yu RQ
    Anal Chim Acta; 2016 May; 921():38-45. PubMed ID: 27126788
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle PEBBLE sensors in live cells.
    Lee YE; Kopelman R
    Methods Enzymol; 2012; 504():419-70. PubMed ID: 22264547
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ratiometric singlet oxygen nano-optodes and their use for monitoring photodynamic therapy nanoplatforms.
    Cao Y; Koo YE; Koo SM; Kopelman R
    Photochem Photobiol; 2005; 81(6):1489-98. PubMed ID: 16107183
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-photon nano-PEBBLE sensors: subcellular pH measurements.
    Ray A; Koo Lee YE; Epstein T; Kim G; Kopelman R
    Analyst; 2011 Sep; 136(18):3616-22. PubMed ID: 21773602
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(decyl methacrylate)-based fluorescent PEBBLE swarm nanosensors for measuring dissolved oxygen in biosamples.
    Cao Y; Lee Koo YE; Kopelman R
    Analyst; 2004 Aug; 129(8):745-50. PubMed ID: 15284919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale probes encapsulated by biologically localized embedding (PEBBLEs) for ion sensing and imaging in live cells.
    Buck SM; Xu H; Brasuel M; Philbert MA; Kopelman R
    Talanta; 2004 May; 63(1):41-59. PubMed ID: 18969403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ratiometric Fluorescent Biosensors for Glucose and Lactate Using an Oxygen-Sensing Membrane.
    Duong HD; Rhee JI
    Biosensors (Basel); 2021 Jun; 11(7):. PubMed ID: 34202015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent nanosensors for intracellular chemical analysis: decyl methacrylate liquid polymer matrix and ion-exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells.
    Brasuel M; Kopelman R; Miller TJ; Tjalkens R; Philbert MA
    Anal Chem; 2001 May; 73(10):2221-8. PubMed ID: 11393844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a Ratiometric Fluorescent Glucose Sensor Using an Oxygen-Sensing Membrane Immobilized with Glucose Oxidase for the Detection of Glucose in Tears.
    Duong HD; Sohn OJ; Rhee JI
    Biosensors (Basel); 2020 Jul; 10(8):. PubMed ID: 32751236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time measurement of the intracellular pH of yeast cells during glucose metabolism using ratiometric fluorescent nanosensors.
    Elsutohy MM; Chauhan VM; Markus R; Kyyaly MA; Tendler SJB; Aylott JW
    Nanoscale; 2017 May; 9(18):5904-5911. PubMed ID: 28436517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The delivery of PEBBLE nanosensors to measure the intracellular environment.
    Webster A; Coupland P; Houghton FD; Leese HJ; Aylott JW
    Biochem Soc Trans; 2007 Jun; 35(Pt 3):538-43. PubMed ID: 17511647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.