BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 12475239)

  • 41. Identification of the protein binding region of S-trityl-L-cysteine, a new potent inhibitor of the mitotic kinesin Eg5.
    Brier S; Lemaire D; Debonis S; Forest E; Kozielski F
    Biochemistry; 2004 Oct; 43(41):13072-82. PubMed ID: 15476401
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Structural analysis of intermolecular interactions in the kinesin adaptor complex fasciculation and elongation protein zeta 1/ short coiled-coil protein (FEZ1/SCOCO).
    Alborghetti MR; Furlan Ada S; da Silva JC; Sforça ML; Honorato RV; Granato DC; dos Santos Migueleti DL; Neves JL; de Oliveira PS; Paes-Leme AF; Zeri AC; de Torriani IC; Kobarg J
    PLoS One; 2013; 8(10):e76602. PubMed ID: 24116125
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effector domain of human Dlg tumor suppressor acts as a switch that relieves autoinhibition of kinesin-3 motor GAKIN/KIF13B.
    Yamada KH; Hanada T; Chishti AH
    Biochemistry; 2007 Sep; 46(35):10039-45. PubMed ID: 17696365
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Single molecule measurements of mechanical interactions within ternary SNARE complexes and dynamics of their disassembly: SNAP25 vs. SNAP23.
    Montana V; Liu W; Mohideen U; Parpura V
    J Physiol; 2009 May; 587(Pt 9):1943-60. PubMed ID: 19273577
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Structurally conserved interaction of Lgl family with SNAREs is critical to their cellular function.
    Gangar A; Rossi G; Andreeva A; Hales R; Brennwald P
    Curr Biol; 2005 Jun; 15(12):1136-42. PubMed ID: 15964280
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Essential kinesins: characterization of Caenorhabditis elegans KLP-15.
    Robin G; DeBonis S; Dornier A; Cappello G; Ebel C; Wade RH; Thierry-Mieg D; Kozielski F
    Biochemistry; 2005 May; 44(17):6526-36. PubMed ID: 15850386
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Disruption of KIF17-Mint1 interaction by CaMKII-dependent phosphorylation: a molecular model of kinesin-cargo release.
    Guillaud L; Wong R; Hirokawa N
    Nat Cell Biol; 2008 Jan; 10(1):19-29. PubMed ID: 18066053
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genomic organization, chromosomal localization, alternative splicing, and isoforms of the human synaptosome-associated protein-23 gene implicated in vesicle-membrane fusion processes.
    Lazo PA; Nadal M; Ferrer M; Area E; Hernández-Torres J; Nabokina SM; Mollinedo F; Estivill X
    Hum Genet; 2001 Mar; 108(3):211-5. PubMed ID: 11354632
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Kinesin-1 plays a role in transport of SNAP-25 to the plasma membrane.
    Morton AM; Cunningham AL; Diefenbach RJ
    Biochem Biophys Res Commun; 2010 Jan; 391(1):388-93. PubMed ID: 19913510
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The length of the flexible SNAREpin juxtamembrane region is a critical determinant of SNARE-dependent fusion.
    McNew JA; Weber T; Engelman DM; Söllner TH; Rothman JE
    Mol Cell; 1999 Sep; 4(3):415-21. PubMed ID: 10518222
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The C-terminal transmembrane region of synaptobrevin binds synaptophysin from adult synaptic vesicles.
    Yelamanchili SV; Reisinger C; Becher A; Sikorra S; Bigalke H; Binz T; Ahnert-Hilger G
    Eur J Cell Biol; 2005 Apr; 84(4):467-75. PubMed ID: 15900706
    [TBL] [Abstract][Full Text] [Related]  

  • 52. SNAP-29: a general SNARE protein that inhibits SNARE disassembly and is implicated in synaptic transmission.
    Su Q; Mochida S; Tian JH; Mehta R; Sheng ZH
    Proc Natl Acad Sci U S A; 2001 Nov; 98(24):14038-43. PubMed ID: 11707603
    [TBL] [Abstract][Full Text] [Related]  

  • 53. SNAP-23 and SNAP-25 are palmitoylated in vivo.
    Vogel K; Roche PA
    Biochem Biophys Res Commun; 1999 May; 258(2):407-10. PubMed ID: 10329400
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tomosyn binds t-SNARE proteins via a VAMP-like coiled coil.
    Masuda ES; Huang BC; Fisher JM; Luo Y; Scheller RH
    Neuron; 1998 Sep; 21(3):479-80. PubMed ID: 9768835
    [No Abstract]   [Full Text] [Related]  

  • 55. Engineering botulinum neurotoxin to extend therapeutic intervention.
    Chen S; Barbieri JT
    Proc Natl Acad Sci U S A; 2009 Jun; 106(23):9180-4. PubMed ID: 19487672
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mapping the GRIF-1 binding domain of the kinesin, KIF5C, substantiates a role for GRIF-1 as an adaptor protein in the anterograde trafficking of cargoes.
    Smith MJ; Pozo K; Brickley K; Stephenson FA
    J Biol Chem; 2006 Sep; 281(37):27216-28. PubMed ID: 16835241
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Co-operative versus independent transport of different cargoes by Kinesin-1.
    Hammond JW; Griffin K; Jih GT; Stuckey J; Verhey KJ
    Traffic; 2008 May; 9(5):725-41. PubMed ID: 18266909
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dimerization of the exocyst protein Sec6p and its interaction with the t-SNARE Sec9p.
    Sivaram MV; Saporita JA; Furgason ML; Boettcher AJ; Munson M
    Biochemistry; 2005 Apr; 44(16):6302-11. PubMed ID: 15835919
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The carboxyl-terminal domain of kinesin heavy chain is important for membrane binding.
    Skoufias DA; Cole DG; Wedaman KP; Scholey JM
    J Biol Chem; 1994 Jan; 269(2):1477-85. PubMed ID: 8288613
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Molecular dissection of the Munc18c/syntaxin4 interaction: implications for regulation of membrane trafficking.
    Latham CF; Lopez JA; Hu SH; Gee CL; Westbury E; Blair DH; Armishaw CJ; Alewood PF; Bryant NJ; James DE; Martin JL
    Traffic; 2006 Oct; 7(10):1408-19. PubMed ID: 16899085
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.