These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

475 related articles for article (PubMed ID: 12475347)

  • 1. Responsive hydrogels from the intramolecular folding and self-assembly of a designed peptide.
    Schneider JP; Pochan DJ; Ozbas B; Rajagopal K; Pakstis L; Kretsinger J
    J Am Chem Soc; 2002 Dec; 124(50):15030-7. PubMed ID: 12475347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-activated hydrogel formation via the triggered folding and self-assembly of a designed peptide.
    Haines LA; Rajagopal K; Ozbas B; Salick DA; Pochan DJ; Schneider JP
    J Am Chem Soc; 2005 Dec; 127(48):17025-9. PubMed ID: 16316249
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermally reversible hydrogels via intramolecular folding and consequent self-assembly of a de novo designed peptide.
    Pochan DJ; Schneider JP; Kretsinger J; Ozbas B; Rajagopal K; Haines L
    J Am Chem Soc; 2003 Oct; 125(39):11802-3. PubMed ID: 14505386
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tuning the pH responsiveness of beta-hairpin peptide folding, self-assembly, and hydrogel material formation.
    Rajagopal K; Lamm MS; Haines-Butterick LA; Pochan DJ; Schneider JP
    Biomacromolecules; 2009 Sep; 10(9):2619-25. PubMed ID: 19663418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the importance of lateral hydrophobic association in self-assembling peptide hydrogelators.
    Rajagopal K; Ozbas B; Pochan DJ; Schneider JP
    Eur Biophys J; 2006 Jan; 35(2):162-9. PubMed ID: 16283291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folding, self-assembly, and bulk material properties of a de novo designed three-stranded beta-sheet hydrogel.
    Rughani RV; Salick DA; Lamm MS; Yucel T; Pochan DJ; Schneider JP
    Biomacromolecules; 2009 May; 10(5):1295-304. PubMed ID: 19344123
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning gelation kinetics and mechanical rigidity of β-hairpin peptide hydrogels via hydrophobic amino acid substitutions.
    Chen C; Gu Y; Deng L; Han S; Sun X; Chen Y; Lu JR; Xu H
    ACS Appl Mater Interfaces; 2014 Aug; 6(16):14360-8. PubMed ID: 25087842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Branched peptides integrate into self-assembled nanostructures and enhance biomechanics of peptidic hydrogels.
    Pugliese R; Fontana F; Marchini A; Gelain F
    Acta Biomater; 2018 Jan; 66():258-271. PubMed ID: 29128535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of self-assembling peptide hydrogelators amenable to bacterial expression.
    Sonmez C; Nagy KJ; Schneider JP
    Biomaterials; 2015 Jan; 37():62-72. PubMed ID: 25453938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide.
    Zhao Y; Yokoi H; Tanaka M; Kinoshita T; Tan T
    Biomacromolecules; 2008 Jun; 9(6):1511-8. PubMed ID: 18498190
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correlations between structure, material properties and bioproperties in self-assembled beta-hairpin peptide hydrogels.
    Hule RA; Nagarkar RP; Altunbas A; Ramay HR; Branco MC; Schneider JP; Pochan DJ
    Faraday Discuss; 2008; 139():251-64; discussion 309-25, 419-20. PubMed ID: 19048999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rheology of peptide- and protein-based physical hydrogels: are everyday measurements just scratching the surface?
    Sathaye S; Mbi A; Sonmez C; Chen Y; Blair DL; Schneider JP; Pochan DJ
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(1):34-68. PubMed ID: 25266637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stimuli-Responsive, Pentapeptide, Nanofiber Hydrogel for Tissue Engineering.
    Tang JD; Mura C; Lampe KJ
    J Am Chem Soc; 2019 Mar; 141(12):4886-4899. PubMed ID: 30830776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-assembly of pH and calcium dual-responsive peptide-amphiphilic hydrogel.
    Zhou XR; Ge R; Luo SZ
    J Pept Sci; 2013 Dec; 19(12):737-44. PubMed ID: 24123618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-assembly and hydrogelation of a potential bioactive peptide derived from quinoa proteins.
    Cheng L; De Leon-Rodriguez LM; Gilbert EP; Loo T; Petters L; Yang Z
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129296. PubMed ID: 38199549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. β-hairpin peptide hydrogels for package delivery.
    Worthington P; Langhans S; Pochan D
    Adv Drug Deliv Rev; 2017 Feb; 110-111():127-136. PubMed ID: 28257999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cytocompatibility of self-assembled beta-hairpin peptide hydrogel surfaces.
    Kretsinger JK; Haines LA; Ozbas B; Pochan DJ; Schneider JP
    Biomaterials; 2005 Sep; 26(25):5177-86. PubMed ID: 15792545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Repeated rapid shear-responsiveness of peptide hydrogels with tunable shear modulus.
    Ramachandran S; Tseng Y; Yu YB
    Biomacromolecules; 2005; 6(3):1316-21. PubMed ID: 15877347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of chemistry and morphology on the biofunctionality of self-assembling diblock copolypeptide hydrogels.
    Pakstis LM; Ozbas B; Hales KD; Nowak AP; Deming TJ; Pochan D
    Biomacromolecules; 2004; 5(2):312-8. PubMed ID: 15002989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of C-terminal modification on the self-assembly and hydrogelation of fluorinated Fmoc-Phe derivatives.
    Ryan DM; Doran TM; Anderson SB; Nilsson BL
    Langmuir; 2011 Apr; 27(7):4029-39. PubMed ID: 21401045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.