These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 12475475)

  • 1. Relationship of chlorine decay and THMs formation to NOM size.
    Gang D; Clevenger TE; Banerji SK
    J Hazard Mater; 2003 Jan; 96(1):1-12. PubMed ID: 12475475
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation, distribution, and speciation of DBPs (THMs, HAAs, ClO
    Padhi RK; Subramanian S; Satpathy KK
    Chemosphere; 2019 Mar; 218():540-550. PubMed ID: 30500715
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of natural organic matter in conventional water treatment processes and evaluation of THM formation with chlorine.
    Özdemır K
    ScientificWorldJournal; 2014; 2014():703173. PubMed ID: 24558323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of combining chlorine dioxide and chlorine on DBP formation in simulated indoor swimming pools.
    Kim D; Ates N; Kaplan Bekaroglu SS; Selbes M; Karanfil T
    J Environ Sci (China); 2017 Aug; 58():155-162. PubMed ID: 28774604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of iodinated trihalomethanes formation during aqueous chlor(am)ination of different iodinated X-ray contrast media compounds in the presence of natural organic matter.
    Ye T; Xu B; Wang Z; Zhang TY; Hu CY; Lin L; Xia SJ; Gao NY
    Water Res; 2014 Dec; 66():390-398. PubMed ID: 25240119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Trihalomethane occurrence in chlorinated reclaimed water at full-scale wastewater treatment plants in NE Spain.
    Matamoros V; Mujeriego R; Bayona JM
    Water Res; 2007 Aug; 41(15):3337-44. PubMed ID: 17585988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monitoring and modeling of disinfection by-products (DBPs).
    Sohn J; Gatel D; Amy G
    Environ Monit Assess; 2001 Jul; 70(1-2):211-22. PubMed ID: 11516016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the formation of trihalomethanes in rural and semi-urban drinking water distribution networks of Costa Rica.
    Kelly-Coto DE; Gamboa-Jiménez A; Mora-Campos D; Salas-Jiménez P; Silva-Narváez B; Jiménez-Antillón J; Pino-Gómez M; Romero-Esquivel LG
    Environ Sci Pollut Res Int; 2022 May; 29(22):32845-32854. PubMed ID: 35020142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of NOM in the Han River and evaluation of treatability using UF-NF membrane.
    Kim MH; Yu MJ
    Environ Res; 2005 Jan; 97(1):116-23. PubMed ID: 15476741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural organic matter characterization by HPSEC and its contribution to trihalomethane formation in Athens water supply network.
    Samios SA; Golfinopoulos SK; Andrzejewski P; Świetlik J
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Aug; 52(10):979-985. PubMed ID: 28541794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulated disinfection byproduct formation over long residence times.
    Kennedy A; Flint L; Aligata A; Hoffman C; Arias-Paić M
    Water Res; 2021 Jan; 188():116523. PubMed ID: 33125996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chlorination of natural organic matter: kinetics of chlorination and of THM formation.
    Gallard H; von GU
    Water Res; 2002 Jan; 36(1):65-74. PubMed ID: 11766819
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of thirteen haloacetic acids and ten trihalomethanes formation by peracetic acid and chlorine drinking water disinfection.
    Xue R; Shi H; Ma Y; Yang J; Hua B; Inniss EC; Adams CD; Eichholz T
    Chemosphere; 2017 Dec; 189():349-356. PubMed ID: 28942261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of disinfection by-product precursors in reservoir water by coagulation and ultrafiltration.
    Wang F; Gao B; Ma D; Yue Q; Li R; Wang Q
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22914-22923. PubMed ID: 27578089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular size distribution of dissolved organic matter in water of the Pearl River and trihalomethane formation characteristics with chlorine and chlorine dioxide treatments.
    Zhao ZY; Gu JD; Fan XJ; Li HB
    J Hazard Mater; 2006 Jun; 134(1-3):60-6. PubMed ID: 16298049
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Examining the interrelationship between DOC, bromide and chlorine dose on DBP formation in drinking water--a case study.
    Bond T; Huang J; Graham NJ; Templeton MR
    Sci Total Environ; 2014 Feb; 470-471():469-79. PubMed ID: 24176694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of water chemistry on disinfection by-product formation in the complex surface water system.
    Hao R; Zhang Y; Du T; Yang L; Adeleye AS; Li Y
    Chemosphere; 2017 Apr; 172():384-391. PubMed ID: 28088529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of natural organic matter in conventional water treatment processes for selection of treatment processes focused on DBPs control.
    Kim HC; Yu MJ
    Water Res; 2005 Nov; 39(19):4779-89. PubMed ID: 16253305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of disinfection byproduct precursors based on hydrophobicity and molecular size.
    Hua G; Reckhow DA
    Environ Sci Technol; 2007 May; 41(9):3309-15. PubMed ID: 17539542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The formation and control of emerging disinfection by-products of health concern.
    Krasner SW
    Philos Trans A Math Phys Eng Sci; 2009 Oct; 367(1904):4077-95. PubMed ID: 19736234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.