BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 12475888)

  • 1. Stochastic resonance in osteogenic response to mechanical loading.
    Tanaka SM; Alam IM; Turner CH
    FASEB J; 2003 Feb; 17(2):313-4. PubMed ID: 12475888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-amplitude, broad-frequency vibration effects on cortical bone formation in mice.
    Castillo AB; Alam I; Tanaka SM; Levenda J; Li J; Warden SJ; Turner CH
    Bone; 2006 Nov; 39(5):1087-1096. PubMed ID: 16793358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mice lacking thrombospondin 2 show an atypical pattern of endocortical and periosteal bone formation in response to mechanical loading.
    Hankenson KD; Ausk BJ; Bain SD; Bornstein P; Gross TS; Srinivasan S
    Bone; 2006 Mar; 38(3):310-6. PubMed ID: 16290255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical loading of diaphyseal bone in vivo: the strain threshold for an osteogenic response varies with location.
    Hsieh YF; Robling AG; Ambrosius WT; Burr DB; Turner CH
    J Bone Miner Res; 2001 Dec; 16(12):2291-7. PubMed ID: 11760844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-dose estrogen treatment suppresses periosteal bone formation in response to mechanical loading.
    Saxon LK; Turner CH
    Bone; 2006 Dec; 39(6):1261-7. PubMed ID: 16934543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo fatigue loading of the rat ulna induces both bone formation and resorption and leads to time-related changes in bone mechanical properties and density.
    Hsieh YF; Silva MJ
    J Orthop Res; 2002 Jul; 20(4):764-71. PubMed ID: 12168665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The skeletal responsiveness to mechanical loading is enhanced in mice with a null mutation in estrogen receptor-beta.
    Saxon LK; Robling AG; Castillo AB; Mohan S; Turner CH
    Am J Physiol Endocrinol Metab; 2007 Aug; 293(2):E484-91. PubMed ID: 17535856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and finite element analysis of the rat ulnar loading model-correlations between strain and bone formation following fatigue loading.
    Kotha SP; Hsieh YF; Strigel RM; Müller R; Silva MJ
    J Biomech; 2004 Apr; 37(4):541-8. PubMed ID: 14996566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sympathetic nervous system does not mediate the load-induced cortical new bone formation.
    de Souza RL; Pitsillides AA; Lanyon LE; Skerry TM; Chenu C
    J Bone Miner Res; 2005 Dec; 20(12):2159-68. PubMed ID: 16294269
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The establishment of a mechanobiology model of bone and functional adaptation in response to mechanical loading.
    Chen XY; Zhang XZ; Guo Y; Li RX; Lin JJ; Wei Y
    Clin Biomech (Bristol, Avon); 2008; 23 Suppl 1():S88-95. PubMed ID: 18448217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site specific bone adaptation response to mechanical loading.
    Kuruvilla SJ; Fox SD; Cullen DM; Akhter MP
    J Musculoskelet Neuronal Interact; 2008; 8(1):71-8. PubMed ID: 18398268
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The establishment of a new mechanobiology model of bone and functional adaptation studies in vivo].
    Chen XY; Zhang XZ; Zhang YL; Zhang CQ; Zhao HB; Zhang YH; Mao Y
    Zhonghua Yi Xue Za Zhi; 2007 May; 87(17):1160-4. PubMed ID: 17686232
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanotransduction in the cortical bone is most efficient at loading frequencies of 5-10 Hz.
    Warden SJ; Turner CH
    Bone; 2004 Feb; 34(2):261-70. PubMed ID: 14962804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noise enhances the rapid nitric oxide production by bone cells in response to fluid shear stress.
    Bacabac RG; Van Loon JJ; Smit TH; Klein-Nulend J
    Technol Health Care; 2009; 17(1):57-65. PubMed ID: 19478406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of a selective agonist for prostaglandin E receptor subtype EP4 (ONO-4819) on the cortical bone response to mechanical loading.
    Hagino H; Kuraoka M; Kameyama Y; Okano T; Teshima R
    Bone; 2005 Mar; 36(3):444-53. PubMed ID: 15777678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rest insertion combined with high-frequency loading enhances osteogenesis.
    LaMothe JM; Zernicke RF
    J Appl Physiol (1985); 2004 May; 96(5):1788-93. PubMed ID: 14707150
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Strain rate influences periosteal adaptation in mature bone.
    LaMothe JM; Hamilton NH; Zernicke RF
    Med Eng Phys; 2005 May; 27(4):277-84. PubMed ID: 15823468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low magnitude mechanical loading is osteogenic in children with disabling conditions.
    Ward K; Alsop C; Caulton J; Rubin C; Adams J; Mughal Z
    J Bone Miner Res; 2004 Mar; 19(3):360-9. PubMed ID: 15040823
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low-magnitude mechanical loading becomes osteogenic when rest is inserted between each load cycle.
    Srinivasan S; Weimer DA; Agans SC; Bain SD; Gross TS
    J Bone Miner Res; 2002 Sep; 17(9):1613-20. PubMed ID: 12211431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelastic response of the rat loading model: implications for studies of strain-adaptive bone formation.
    Hsieh YF; Wang T; Turner CH
    Bone; 1999 Sep; 25(3):379-82. PubMed ID: 10495144
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.