These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 12476875)

  • 1. Manufacture of slow-release matrix granules by wet granulation with an aqueous dispersion of quaternary poly(meth)acrylates in the fluidized bed.
    Radtke G; Knop K; Lippold BC
    Drug Dev Ind Pharm; 2002 Nov; 28(10):1295-302. PubMed ID: 12476875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Important parameters for the manufacture of slow-release matrix pellets with an aqueous dispersion of quaternary poly(meth)acrylates in the rotary fluidized bed.
    Radtke G; Knop K; Lippold BC
    Drug Dev Ind Pharm; 2006 Mar; 32(3):287-96. PubMed ID: 16556533
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of polyvinyl acetate dispersion as a sustained release polymer for tablets.
    Bordaweka MS; Zia H; Quadir A
    Drug Deliv; 2006; 13(2):121-31. PubMed ID: 16423800
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro dissolution studies of sodium diclofenac granules coated with Eudragit L-30D-55 by fluidized-bed system.
    Silva OS; Souza CR; Oliveira WP; Rocha SC
    Drug Dev Ind Pharm; 2006 Jul; 32(6):661-7. PubMed ID: 16885121
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fluid bed granulation of a poorly water soluble, low density, micronized drug: comparison with high shear granulation.
    Gao JZ; Jain A; Motheram R; Gray DB; Hussain MA
    Int J Pharm; 2002 Apr; 237(1-2):1-14. PubMed ID: 11955799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eudragit(®) RS PO/RL PO as rate-controlling matrix-formers via roller compaction: Influence of formulation and process variables on functional attributes of granules and tablets.
    Dave VS; Fahmy RM; Bensley D; Hoag SW
    Drug Dev Ind Pharm; 2012 Oct; 38(10):1240-53. PubMed ID: 22257339
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An investigation into the effect of formulation variables and process parameters on characteristics of granules obtained by in situ fluidized hot melt granulation.
    Mašić I; Ilić I; Dreu R; Ibrić S; Parojčić J; Durić Z
    Int J Pharm; 2012 Feb; 423(2):202-12. PubMed ID: 22197773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of thermal treatment and type of insoluble poly(meth)acrylates on dissolution behavior of very soluble drug from hypromellose matrix tablets evaluated by multivariate data analysis.
    Kubova K; Peček D; Hasserová K; Doležel P; Pavelková M; Vyslouzil J; Muselík J; Vetchy D
    Pharm Dev Technol; 2017 Mar; 22(2):206-217. PubMed ID: 28058866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surelease as granulating liquid in preparation of sustained release matrices of ethylcellulose and theophylline.
    Afrasiabi Garekani H; Faghihnia Torshizi M; Sadeghi F
    Drug Dev Ind Pharm; 2015; 41(10):1655-60. PubMed ID: 25402967
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melt granulation in fluidized bed: a comparative study of spray-on versus in situ procedure.
    Mašić I; Ilić I; Dreu R; Ibrić S; Parojčić J; Srčič S
    Drug Dev Ind Pharm; 2014 Jan; 40(1):23-32. PubMed ID: 23294368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chitosan and sodium sulfate as excipients in the preparation of prolonged release theophylline tablets.
    Alsarra IA; El-Bagory I; Bayomi MA
    Drug Dev Ind Pharm; 2005 May; 31(4-5):385-95. PubMed ID: 16093204
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using experimental design to optimize the process parameters in fluidized bed granulation.
    Rambali B; Baert L; Thoné D; Massart DL
    Drug Dev Ind Pharm; 2001 Jan; 27(1):47-55. PubMed ID: 11247535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using experimental design to optimize the process parameters in fluidized bed granulation on a semi-full scale.
    Rambali B; Baert L; Massart DL
    Int J Pharm; 2001 Jun; 220(1-2):149-60. PubMed ID: 11376977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of fluidized bed granulation process using conventional and novel modeling techniques.
    Petrović J; Chansanroj K; Meier B; Ibrić S; Betz G
    Eur J Pharm Sci; 2011 Oct; 44(3):227-34. PubMed ID: 21839830
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applying a novel electrostatic dry powder coating technology to pellets.
    Yang Q; Ma Y; Zhu J
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):118-24. PubMed ID: 26478275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Process analytical tools for monitoring, understanding, and control of pharmaceutical fluidized bed granulation: A review.
    Burggraeve A; Monteyne T; Vervaet C; Remon JP; De Beer T
    Eur J Pharm Biopharm; 2013 Jan; 83(1):2-15. PubMed ID: 23041243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation on side-spray fluidized bed granulation with swirling airflow.
    Wong PM; Chan LW; Heng PW
    AAPS PharmSciTech; 2013 Mar; 14(1):211-21. PubMed ID: 23263750
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparison of granules produced by high-shear and fluidized-bed granulation methods.
    Morin G; Briens L
    AAPS PharmSciTech; 2014 Aug; 15(4):1039-48. PubMed ID: 24839117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding and predicting bed humidity in fluidized bed granulation.
    Hu X; Cunningham J; Winstead D
    J Pharm Sci; 2008 Apr; 97(4):1564-77. PubMed ID: 17705157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A semi-theoretical model for simulating the temporal evolution of moisture-temperature during industrial fluidized bed granulation.
    Amini H; He X; Tseng YC; Kucuk G; Schwabe R; Schultz L; Maus M; Schröder D; Rajniak P; Bilgili E
    Eur J Pharm Biopharm; 2020 Jun; 151():137-152. PubMed ID: 32304867
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.