These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 12477114)

  • 1. Characterization of a mixed sphere and film waveguide at the 1-microm scale by 0.67-microm laser light propagation.
    Huang F; Morita S
    Appl Opt; 2002 Dec; 41(34):7241-4. PubMed ID: 12477114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical properties of epitaxial Ca
    Vigne S; Hossain N; Fesharaki F; Kabir SM; Margot J; Wu K; Chaker M
    Opt Express; 2016 Dec; 24(25):28573-28582. PubMed ID: 27958501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigations of the optical properties of thin, highly absorbing films under attenuated total reflection conditions: Leaky waveguide mode distortions.
    Piruska A; Zudans I; Heineman WR; Seliskar CJ
    Talanta; 2005 Mar; 65(5):1110-9. PubMed ID: 18969920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-loss GeO(2) optical waveguide fabrication using low deposition rate rf sputtering.
    Yin ZY; Garside BK
    Appl Opt; 1982 Dec; 21(23):4324-8. PubMed ID: 20401063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene oxide-based waveguide polariser: from thin film to quasi-bulk.
    Lim WH; Yap YK; Chong WY; Pua CH; Huang NM; De La Rue RM; Ahmad H
    Opt Express; 2014 May; 22(9):11090-8. PubMed ID: 24921807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of sphere-surface distance and exposure dose on resolution of sphere-lens-array lithography.
    Liu X; Li X; Li L; Chen W; Luo X
    Opt Express; 2015 Nov; 23(23):30136-42. PubMed ID: 26698494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple method of measuring propagation properties of integrated optical waveguides: an improvement.
    Okamura Y; Sato S; Yamamoto S
    Appl Opt; 1985 Jan; 24(1):57-60. PubMed ID: 18216904
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications.
    Cai L; Mahmoud A; Piazza G
    Opt Express; 2019 Apr; 27(7):9794-9802. PubMed ID: 31045128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design for beam splitting components employing silicon-on-insulator rib waveguide structures.
    Hsiao CS; Wang L
    Opt Lett; 2005 Dec; 30(23):3153-5. PubMed ID: 16342706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-crystal electrooptic thin-film waveguide modulators for infrared laser systems.
    Lotspeich JF
    Appl Opt; 1974 Nov; 13(11):2529-39. PubMed ID: 20134733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, fabrication, and characterization of a single-polarization single-mode flexible hollow waveguide for low loss millimeter wave propagation.
    He M; Chen Z; Zeng J; Chen K; Liu S; Zhang X; Zhu X; Jing C; Chang C; Shi Y
    Opt Express; 2022 Mar; 30(6):10178-10186. PubMed ID: 35299427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transverse coupling between a single-mode fiber and a thin-film waveguide.
    Bradley L; Millar CA
    Opt Lett; 1987 May; 12(5):358-60. PubMed ID: 19738890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precision measurements of the optical attenuation profile along the propagation path in thin-film waveguides.
    Teng CC
    Appl Opt; 1993 Mar; 32(7):1051-4. PubMed ID: 20820230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 1.54-microm TM-mode waveguide optical isolator based on the nonreciprocal-loss phenomenon: device design to reduce insertion loss.
    Amemiya T; Shimizu H; Yokoyama M; Hai PN; Tanaka M; Nakano Y
    Appl Opt; 2007 Aug; 46(23):5784-91. PubMed ID: 17694128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Epitaxial Ba(2)NaNb(5)O(15) thin film by pulsed laser deposition and its waveguide properties.
    Zhu SN; Zhu YY; Liu JM; Zhang ZY; Shu H; Hong JF; Ge CZ; Lin ZS; Ming NB
    Opt Lett; 1995 Feb; 20(3):291-3. PubMed ID: 19859164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The passive optical properties of a silicon nanoparticle-embedded benzocyclobutene polymer waveguide.
    Chiu JJ; Perng TP
    Nanotechnology; 2008 Jul; 19(28):285718. PubMed ID: 21828752
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical waveguide spectrometer based on thin-film glass plates.
    Qi ZM; Matsuda N; Yoshida T; Asano H; Takatsu A; Kato K
    Opt Lett; 2002 Nov; 27(22):2001-3. PubMed ID: 18033425
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BaTiO3 thin-film waveguide modulator with a low voltage-length product at near-infrared wavelengths of 0.98 and 1.55 microm.
    Tang P; Meier AL; Towner DJ; Wessels BW
    Opt Lett; 2005 Feb; 30(3):254-6. PubMed ID: 15751876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dry Film Photoresist-Based Microfabrication: A New Method to Fabricate Millimeter-Wave Waveguide Components.
    Farjana S; Ghaderi M; Rahiminejad S; Haasl S; Enoksson P
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33802473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optically driven Mie particles in an evanescent field along a channeled waveguide.
    Kawata S; Tani T
    Opt Lett; 1996 Nov; 21(21):1768-70. PubMed ID: 19881795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.