These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 12477125)

  • 1. Adaptive calibration for object localization in turbid media with interfering diffuse photon density waves.
    Chen Y; Mu C; Intes X; Chance B
    Appl Opt; 2002 Dec; 41(34):7325-33. PubMed ID: 12477125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Implementation of a phase array diffuse optical tomographic imager.
    Rajan K; Vijayakumar V; Biswas SK; Vasu RM
    Rev Sci Instrum; 2008 Aug; 79(8):084301. PubMed ID: 19044366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Green functions for diffuse photon-density waves generated by a line source in two nonabsorbing turbid media in contact.
    Shendeleva ML
    Appl Opt; 2004 Mar; 43(8):1638-42. PubMed ID: 15046165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photon path distribution in inhomogeneous turbid media: theoretical analysis and a method of calculation.
    Tsuchiya Y
    J Opt Soc Am A Opt Image Sci Vis; 2002 Jul; 19(7):1383-9. PubMed ID: 12095206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical computed tomography in a turbid medium using early arriving photons.
    Chen K; Perelman LT; Zhang Q; Dasari RR; Feld MS
    J Biomed Opt; 2000 Apr; 5(2):144-54. PubMed ID: 10938778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media: analytic solution and applications.
    Boas DA; O'Leary MA; Chance B; Yodh AG
    Proc Natl Acad Sci U S A; 1994 May; 91(11):4887-91. PubMed ID: 8197151
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection performance of a diffusive wave phased array.
    Morgan SP
    Appl Opt; 2004 Apr; 43(10):2071-8. PubMed ID: 15074415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Signal-to-noise analysis for detection sensitivity of small absorbing heterogeneity in turbid media with single-source and dual-interfering-source.
    Chen Y; Mu C; Intes X; Chance B
    Opt Express; 2001 Aug; 9(4):212-24. PubMed ID: 19421292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A primary method for determination of optical parameters of turbid samples and application to intralipid between 550 and 1630 nm.
    Chen C; Lu JQ; Ding H; Jacobs KM; Du Y; Hu XH
    Opt Express; 2006 Aug; 14(16):7420-35. PubMed ID: 19529109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency-domain theory of laser infrared photothermal radiometric detection of thermal waves generated by diffuse-photon-density wave fields in turbid media.
    Mandelis A; Feng C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Feb; 65(2 Pt 1):021909. PubMed ID: 11863565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of noise on modulation amplitude and phase in frequency-domain diffusive imaging.
    Kang D; Kupinski MA
    J Biomed Opt; 2012 Jan; 17(1):016010. PubMed ID: 22352660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The finite-element method for the propagation of light in scattering media: frequency domain case.
    Schweiger M; Arridge SR
    Med Phys; 1997 Jun; 24(6):895-902. PubMed ID: 9198025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements.
    Yin L; Wang Q; Zhang Q; Jiang H
    Opt Lett; 2007 Sep; 32(17):2556-8. PubMed ID: 17767303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oximetry based on diffuse photon density wave differentials.
    Ntziachristos V; Kohl M; Ma H; Chance B
    Med Phys; 2000 Feb; 27(2):410-21. PubMed ID: 10718146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resolved object imaging and localization with the use of a backpropagation algorithm.
    Matson C; Liu H
    Opt Express; 2000 Apr; 6(9):168-74. PubMed ID: 19404348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of the surface effect of a small scattering object in a highly scattering medium by use of diffuse photon-pairs density wave.
    Wu JS; Yu LP; Chou C
    J Biomed Opt; 2016 Jun; 21(6):60504. PubMed ID: 27304418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model for photon migration in turbid biological media.
    Bonner RF; Nossal R; Havlin S; Weiss GH
    J Opt Soc Am A; 1987 Mar; 4(3):423-32. PubMed ID: 3572576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection limit enhancement of fluorescent heterogeneities in turbid media by dual-interfering excitation.
    Intes X; Chen Y; Li X; Chance B
    Appl Opt; 2002 Jul; 41(19):3999-4007. PubMed ID: 12099611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Locating inhomogeneities in tissue by using the most probable diffuse path of light.
    Bai J; Gao T; Ying K; Chen N
    J Biomed Opt; 2005; 10(2):024024. PubMed ID: 15910097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of higher-order time-domain perturbation theory of photon diffusion on breast-equivalent phantoms and optical mammograms.
    Grosenick D; Kummrow A; Macdonald R; Schlag PM; Rinneberg H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Dec; 76(6 Pt 1):061908. PubMed ID: 18233870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.