These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 12477892)

  • 21. Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic midge, Belgica antarctica.
    Elnitsky MA; Hayward SA; Rinehart JP; Denlinger DL; Lee RE
    J Exp Biol; 2008 Feb; 211(Pt 4):524-30. PubMed ID: 18245628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Desiccation stress at sub-zero temperatures in polar terrestrial arthropods.
    Worland MR; Block W
    J Insect Physiol; 2003 Mar; 49(3):193-203. PubMed ID: 12769994
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular analysis of the cold tolerant Antarctic nematode, Panagrolaimus davidi.
    Thorne MA; Kagoshima H; Clark MS; Marshall CJ; Wharton DA
    PLoS One; 2014; 9(8):e104526. PubMed ID: 25098249
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Freeze or dehydrate: only two options for the survival of subzero temperatures in the arctic enchytraeid Fridericia ratzeli.
    Pedersen PG; Holmstrup M
    J Comp Physiol B; 2003 Sep; 173(7):601-9. PubMed ID: 12898166
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recrystallization in a freezing tolerant Antarctic nematode, Panagrolaimus davidi, and an alpine weta, Hemideina maori (Orthoptera; Stenopelmatidae).
    Ramløv H; Wharton DA; Wilson PW
    Cryobiology; 1996 Dec; 33(6):607-13. PubMed ID: 8975688
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surviving in a frozen desert: environmental stress physiology of terrestrial Antarctic arthropods.
    Teets NM; Denlinger DL
    J Exp Biol; 2014 Jan; 217(Pt 1):84-93. PubMed ID: 24353207
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular evolution in Panagrolaimus nematodes: origins of parthenogenesis, hermaphroditism and the Antarctic species P. davidi.
    Lewis SC; Dyal LA; Hilburn CF; Weitz S; Liau WS; Lamunyon CW; Denver DR
    BMC Evol Biol; 2009 Jan; 9():15. PubMed ID: 19149894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The protective effect of rapid cold-hardening develops more quickly in frozen versus supercooled larvae of the Antarctic midge, Belgica antarctica.
    Kawarasaki Y; Teets NM; Denlinger DL; Lee RE
    J Exp Biol; 2013 Oct; 216(Pt 20):3937-45. PubMed ID: 23868837
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Desiccation tolerance and drought acclimation in the Antarctic collembolan Cryptopygus antarcticus.
    Elnitsky MA; Benoit JB; Denlinger DL; Lee RE
    J Insect Physiol; 2008; 54(10-11):1432-9. PubMed ID: 18761345
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Slow dehydration promotes desiccation and freeze tolerance in the Antarctic midge Belgica antarctica.
    Hayward SA; Rinehart JP; Sandro LH; Lee RE; Denlinger DL
    J Exp Biol; 2007 Mar; 210(Pt 5):836-44. PubMed ID: 17297143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Freeze tolerance, supercooling points and ice formation: comparative studies on the subzero temperature survival of limno-terrestrial tardigrades.
    Hengherr S; Worland MR; Reuner A; Brümmer F; Schill RO
    J Exp Biol; 2009 Mar; 212(Pt 6):802-7. PubMed ID: 19251996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extra- and intracellular ice formation in mouse oocytes.
    Mazur P; Seki S; Pinn IL; Kleinhans FW; Edashige K
    Cryobiology; 2005 Aug; 51(1):29-53. PubMed ID: 15975568
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The ins and outs of water dynamics in cold tolerant soil invertebrates.
    Holmstrup M
    J Therm Biol; 2014 Oct; 45():117-23. PubMed ID: 25436960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Osmoregulation in the Antarctic nematode Panagrolaimus davidi.
    Wharton DA
    J Exp Biol; 2010 Jun; 213(Pt 12):2025-30. PubMed ID: 20511515
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Establishing RNAi in a Non-Model Organism: The Antarctic Nematode Panagrolaimus sp. DAW1.
    Seybold AC; Wharton DA; Thorne MA; Marshall CJ
    PLoS One; 2016; 11(11):e0166228. PubMed ID: 27832164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Factors that influence freezing in the sub-Antarctic springtail Tullbergia antarctica.
    Worland MR
    J Insect Physiol; 2005 Aug; 51(8):881-94. PubMed ID: 15936029
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanisms underlying insect freeze tolerance.
    Toxopeus J; Sinclair BJ
    Biol Rev Camb Philos Soc; 2018 Nov; 93(4):1891-1914. PubMed ID: 29749114
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protective effect of intracellular ice during freezing?
    Acker JP; McGann LE
    Cryobiology; 2003 Apr; 46(2):197-202. PubMed ID: 12686211
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intracellular ice formation in mouse zygotes and early morulae vs. cooling rate and temperature-experimental vs. theory.
    Jin B; Seki S; Paredes E; Qiu J; Shi Y; Zhang Z; Ma C; Jiang S; Li J; Yuan F; Wang S; Shao X; Mazur P
    Cryobiology; 2016 Oct; 73(2):181-6. PubMed ID: 27481511
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The anhydrobiotic potential and molecular phylogenetics of species and strains of Panagrolaimus (Nematoda, Panagrolaimidae).
    Shannon AJ; Browne JA; Boyd J; Fitzpatrick DA; Burnell AM
    J Exp Biol; 2005 Jun; 208(Pt 12):2433-45. PubMed ID: 15939782
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.