BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 12479246)

  • 1. Isometric force kinetics upon rapid activation and relaxation of mouse, guinea pig and human heart muscle studied on the subcellular myofibrillar level.
    Stehle R; Krüger M; Scherer P; Brixius K; Schwinger RH; Pfitzer G
    Basic Res Cardiol; 2002; 97 Suppl 1():I127-35. PubMed ID: 12479246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of Ca2+ and crossbridge kinetics in determining the maximum rates of Ca2+ activation and relaxation in rat and guinea pig skinned trabeculae.
    Palmer S; Kentish JC
    Circ Res; 1998 Jul; 83(2):179-86. PubMed ID: 9686757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force kinetics and individual sarcomere dynamics in cardiac myofibrils after rapid ca(2+) changes.
    Stehle R; Krüger M; Pfitzer G
    Biophys J; 2002 Oct; 83(4):2152-61. PubMed ID: 12324432
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical properties of sarcomeres during cardiac myofibrillar relaxation: stretch-induced cross-bridge detachment contributes to early diastolic filling.
    Stehle R; Solzin J; Iorga B; Gomez D; Blaudeck N; Pfitzer G
    J Muscle Res Cell Motil; 2006; 27(5-7):423-34. PubMed ID: 16897577
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relaxation from rigor of skinned trabeculae of the guinea pig induced by laser photolysis of caged ATP.
    Martin H; Barsotti RJ
    Biophys J; 1994 Apr; 66(4):1115-28. PubMed ID: 8038383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic mechanism of the Ca2+-dependent switch-on and switch-off of cardiac troponin in myofibrils.
    Solzin J; Iorga B; Sierakowski E; Gomez Alcazar DP; Ruess DF; Kubacki T; Zittrich S; Blaudeck N; Pfitzer G; Stehle R
    Biophys J; 2007 Dec; 93(11):3917-31. PubMed ID: 17704185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of skinned trabeculae of the guinea pig induced by laser photolysis of caged ATP.
    Martin H; Barsotti RJ
    Biophys J; 1994 Nov; 67(5):1933-41. PubMed ID: 7858130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does cross-bridge activation determine the time course of myofibrillar relaxation?
    Stehle R; Krüger M; Pfitzer G
    Adv Exp Med Biol; 2003; 538():469-79; discussion 479. PubMed ID: 15098692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of the Ca2+ sensitizers caffeine and CGP 48506 on the relaxation rate of rat skinned cardiac trabeculae.
    Palmer S; Kentish JC
    Circ Res; 1997 May; 80(5):682-7. PubMed ID: 9130449
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of Ca2+ on force redevelopment kinetics in skinned rat myocardium.
    Hancock WO; Martyn DA; Huntsman LL; Gordon AM
    Biophys J; 1996 Jun; 70(6):2819-29. PubMed ID: 8744319
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force regulation by Ca2+ in skinned single cardiac myocytes of frog.
    Brandt PW; Colomo F; Piroddi N; Poggesi C; Tesi C
    Biophys J; 1998 Apr; 74(4):1994-2004. PubMed ID: 9545058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Myofibrillar determinants of rate of relaxation in skinned skeletal muscle fibers.
    Luo Y; Davis JP; Tikunova SB; Smillie LB; Rall JA
    Adv Exp Med Biol; 2003; 538():573-81; discussion 581-2. PubMed ID: 15098700
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The ATP hydrolysis and phosphate release steps control the time course of force development in rabbit skeletal muscle.
    Sleep J; Irving M; Burton K
    J Physiol; 2005 Mar; 563(Pt 3):671-87. PubMed ID: 15611023
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensitization of dog and guinea pig heart myofilaments to Ca2+ activation and the inotropic effect of pimobendan: comparison with milrinone.
    Fujino K; Sperelakis N; Solaro RJ
    Circ Res; 1988 Nov; 63(5):911-22. PubMed ID: 2846200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myofibrillar ATPase activity and mechanical performance of skinned fibres from rabbit psoas muscle.
    Potma EJ; Stienen GJ; Barends JP; Elzinga G
    J Physiol; 1994 Jan; 474(2):303-17. PubMed ID: 8006817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of cross-bridge detachment in isometric force relaxation of skeletal and cardiac myofibrils.
    Belus A; Piroddi N; Tesi C
    J Muscle Res Cell Motil; 2003; 24(4-6):261-7. PubMed ID: 14620739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The inhibitory effects of monovalent ions on force development in detergent-skinned ventricular muscle from guinea-pig.
    Kentish JC
    J Physiol; 1984 Jul; 352():353-74. PubMed ID: 6747893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relation between sarcomere energetics and the rate of isometric tension relaxation in healthy and diseased cardiac muscle.
    Vitale G; Ferrantini C; Piroddi N; Scellini B; Pioner JM; Colombini B; Tesi C; Poggesi C
    J Muscle Res Cell Motil; 2021 Mar; 42(1):47-57. PubMed ID: 31745760
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Force response to rapid length change during contraction and rigor in skinned smooth muscle of guinea-pig taenia coli.
    Arheden H; Hellstrand P
    J Physiol; 1991 Oct; 442():601-30. PubMed ID: 1798045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion of the titin N2B region accelerates myofibrillar force development but does not alter relaxation kinetics.
    Elhamine F; Radke MH; Pfitzer G; Granzier H; Gotthardt M; Stehle R
    J Cell Sci; 2014 Sep; 127(Pt 17):3666-74. PubMed ID: 24982444
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.