These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 12480285)

  • 1. The use of a porcine organotypic cornea construct for permeation studies from formulations containing befunolol hydrochloride.
    Reichl S; Müller-Goymann CC
    Int J Pharm; 2003 Jan; 250(1):191-201. PubMed ID: 12480285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human corneal equivalent as cell culture model for in vitro drug permeation studies.
    Reichl S; Bednarz J; Müller-Goymann CC
    Br J Ophthalmol; 2004 Apr; 88(4):560-5. PubMed ID: 15031177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Development of an organotypic corneal construction as an in vitro model for permeability studies].
    Reichl S; Müller-Goymann CC
    Ophthalmologe; 2001 Sep; 98(9):853-8. PubMed ID: 11594225
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reconstruction of an in vitro cornea and its use for drug permeation studies from different formulations containing pilocarpine hydrochloride.
    Tegtmeyer S; Papantoniou I; Müller-Goymann CC
    Eur J Pharm Biopharm; 2001 Mar; 51(2):119-25. PubMed ID: 11226818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human cornea construct HCC-an alternative for in vitro permeation studies? A comparison with human donor corneas.
    Reichl S; Döhring S; Bednarz J; Müller-Goymann CC
    Eur J Pharm Biopharm; 2005 Jul; 60(2):305-8. PubMed ID: 15939241
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Esterase activity of human organotypic cornea construct (HCC) as in vitro model for permeation studies].
    Meyer L; Bednarz J; Müller-Goymann CC; Reichl S
    Ophthalmologe; 2005 Oct; 102(10):971-80. PubMed ID: 15785910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of formulation factors on in vitro permeation of moxifloxacin from aqueous drops through excised goat, sheep, and buffalo corneas.
    Pawar PK; Majumdar DK
    AAPS PharmSciTech; 2006 Feb; 7(1):E13. PubMed ID: 16584143
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of formulation factors on in vitro transcorneal permeation of gatifloxacin from aqueous drops.
    Rathore MS; Majumdar DK
    AAPS PharmSciTech; 2006 Jul; 7(3):57. PubMed ID: 17025238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell culture models of the human cornea - a comparative evaluation of their usefulness to determine ocular drug absorption in-vitro.
    Reichl S
    J Pharm Pharmacol; 2008 Mar; 60(3):299-307. PubMed ID: 18284809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cultivation and characterization of a bovine in vitro model of the cornea.
    Tegtmeyer S; Reichl S; Müller-Goymann CC
    Pharmazie; 2004 Jun; 59(6):464-71. PubMed ID: 15248462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Opacification test by using the pig isolated cornea and its application to a test of corneal opacity induced by befunolol hydrochloride.
    Igarashi H; Katsuta Y; Matsuno H; Nakazato Y; Kawasaki T
    J Toxicol Sci; 1989 May; 14(2):91-103. PubMed ID: 2570879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro permeation studies comparing bovine nasal mucosa, porcine cornea and artificial membrane: androstenedione in microemulsions and their components.
    Richter T; Keipert S
    Eur J Pharm Biopharm; 2004 Jul; 58(1):137-43. PubMed ID: 15207547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excised porcine cornea integrity evaluation in an in vitro model of iontophoretic ocular research.
    Gratieri T; Gelfuso GM; Thomazini JA; Lopez RF
    Ophthalmic Res; 2010; 43(4):208-16. PubMed ID: 20068374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vitro permeation characteristics of moxifloxacin from oil drops through excised goat, sheep, buffalo and rabbit corneas.
    Pawar PK; Majumdar DK
    Pharmazie; 2007 Nov; 62(11):853-7. PubMed ID: 18065102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Use of derivative UV spectroscopy to monitor the percutaneous absorption of befunolol-HCL].
    Yang L; Zheng JM
    Yao Xue Xue Bao; 1990; 25(12):916-9. PubMed ID: 2104471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of n-octenylsuccinate starch on in vitro permeation of sodium diclofenac across excised porcine cornea in comparison to Voltaren ophtha.
    Baydoun L; Müller-Goymann CC
    Eur J Pharm Biopharm; 2003 Jul; 56(1):73-9. PubMed ID: 12837484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Construction of a complete rabbit cornea substitute using a fibrin-agarose scaffold.
    Alaminos M; Del Carmen Sánchez-Quevedo M; Muñoz-Avila JI; Serrano D; Medialdea S; Carreras I; Campos A
    Invest Ophthalmol Vis Sci; 2006 Aug; 47(8):3311-7. PubMed ID: 16877396
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    De Hoon I; Boukherroub R; De Smedt SC; Szunerits S; Sauvage F
    Mol Pharm; 2023 Jul; 20(7):3298-3319. PubMed ID: 37314950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing and sustaining the topical ocular delivery of fluconazole using chitosan solution and poloxamer/chitosan in situ forming gel.
    Gratieri T; Gelfuso GM; de Freitas O; Rocha EM; Lopez RF
    Eur J Pharm Biopharm; 2011 Oct; 79(2):320-7. PubMed ID: 21641994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constructing an in vitro cornea from cultures of the three specific corneal cell types.
    Schneider AI; Maier-Reif K; Graeve T
    In Vitro Cell Dev Biol Anim; 1999 Oct; 35(9):515-26. PubMed ID: 10548433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.