These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 12480285)

  • 21. Determination of permeability coefficients of ophthalmic drugs through different layers of porcine, rabbit and bovine eyes.
    Loch C; Zakelj S; Kristl A; Nagel S; Guthoff R; Weitschies W; Seidlitz A
    Eur J Pharm Sci; 2012 Aug; 47(1):131-8. PubMed ID: 22659372
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In vitro permeation of carvedilol through porcine skin: effect of vehicles and penetration enhancers.
    Gannu R; Vishnu YV; Kishan V; Rao YM
    PDA J Pharm Sci Technol; 2008; 62(4):256-63. PubMed ID: 19174954
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Multidrug resistance-associated protein (MRP1, 2, 4 and 5) expression in human corneal cell culture models and animal corneal tissue.
    Verstraelen J; Reichl S
    Mol Pharm; 2014 Jul; 11(7):2160-71. PubMed ID: 24456047
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of preservative, antioxidant and viscolizing agents on in vitro transcorneal permeation of ketorolac tromethamine.
    Malhotra M; Majumdar DK
    Indian J Exp Biol; 2002 May; 40(5):555-9. PubMed ID: 12622201
    [TBL] [Abstract][Full Text] [Related]  

  • 25. New surface-active polymers for ophthalmic formulations: evaluation of ocular tolerance.
    Baydoun L; Furrer P; Gurny R; Müller-Goymann CC
    Eur J Pharm Biopharm; 2004 Jul; 58(1):169-75. PubMed ID: 15207551
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Beta-adrenergic blockers: ocular penetration and binding to the uveal pigment.
    Araie M; Takase M; Sakai Y; Ishii Y; Yokoyama Y; Kitagawa M
    Jpn J Ophthalmol; 1982; 26(3):248-63. PubMed ID: 6130180
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancement of corneal permeation of riboflavin-5'-phosphate through vitamin E TPGS: a promising approach in corneal trans-epithelial cross linking treatment.
    Ostacolo C; Caruso C; Tronino D; Troisi S; Laneri S; Pacente L; Del Prete A; Sacchi A
    Int J Pharm; 2013 Jan; 440(2):148-53. PubMed ID: 23046664
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In-situ ocular absorption of ophthalmic beta-blockers through ocular membranes in albino rabbits.
    Sasaki H; Ichikawa M; Kawakami S; Yamamura K; Mukai T; Nishida K; Nakamura J
    J Pharm Pharmacol; 1997 Feb; 49(2):140-4. PubMed ID: 9055184
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of drug loading and type of ointment base on the in vitro performance of acyclovir ophthalmic ointment.
    Al-Ghabeish M; Xu X; Krishnaiah YS; Rahman Z; Yang Y; Khan MA
    Int J Pharm; 2015 Nov; 495(2):783-91. PubMed ID: 26343911
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of cultured rabbit corneal epithelium for drug permeation studies: a comparison with excised rabbit cornea.
    Burgalassi S; Monti D; Brignoccoli A; Fabiani O; Lenzi C; Pirone A; Chetoni P
    J Ocul Pharmacol Ther; 2004 Dec; 20(6):518-32. PubMed ID: 15684811
    [TBL] [Abstract][Full Text] [Related]  

  • 31. In vitro evaluation of the permeation enhancing effect of polycarbophil-cysteine conjugates on the cornea of rabbits.
    Hornof MD; Bernkop-Schnürch A
    J Pharm Sci; 2002 Dec; 91(12):2588-92. PubMed ID: 12434402
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a convenient ex vivo model for the study of the transcorneal permeation of drugs: histological and permeability evaluation.
    Pescina S; Govoni P; Potenza A; Padula C; Santi P; Nicoli S
    J Pharm Sci; 2015 Jan; 104(1):63-71. PubMed ID: 25394188
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Organotypic culture of the rabbit cornea. Evaluation of its morphologic criteria].
    Morax S; Renard G; Pouliquen DL; Denis-Lasalle J
    Arch Ophtalmol Rev Gen Ophtalmol; 1975; 35(8-9):669-92. PubMed ID: 130893
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Reconstruction of a tissue-engineered cornea with porcine corneal acellular matrix as the scaffold.
    Fu Y; Fan X; Chen P; Shao C; Lu W
    Cells Tissues Organs; 2010; 191(3):193-202. PubMed ID: 19690400
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and evaluation of moxifloxacin hydrochloride ocular inserts.
    Pawar PK; Katara R; Majumdar DK
    Acta Pharm; 2012 Mar; 62(1):93-104. PubMed ID: 22472452
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cubic liquid crystalline nanoparticles: optimization and evaluation for ocular delivery of tropicamide.
    Verma P; Ahuja M
    Drug Deliv; 2016 Oct; 23(8):3043-3054. PubMed ID: 26878398
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vitro transcorneal permeation of ketorolac from oil based ocular drops and ophthalmic ointment.
    Malhotra M; Majumdar DK
    Indian J Exp Biol; 1997 Dec; 35(12):1324-30. PubMed ID: 9567769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of formulation factors on in-vitro permeation of diclofenac from experimental and marketed aqueous eye drops through excised goat cornea.
    Ahuja M; Dhake AS; Majumdar DK
    Yakugaku Zasshi; 2006 Dec; 126(12):1369-75. PubMed ID: 17139162
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Basement membrane assembly and differentiation of cultured corneal cells: importance of culture environment and endothelial cell interaction.
    Zieske JD; Mason VS; Wasson ME; Meunier SF; Nolte CJ; Fukai N; Olsen BR; Parenteau NL
    Exp Cell Res; 1994 Oct; 214(2):621-33. PubMed ID: 7523155
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Diclofenac sodium delivery to the eye: in vitro evaluation of novel solid lipid nanoparticle formulation using human cornea construct.
    Attama AA; Reichl S; Müller-Goymann CC
    Int J Pharm; 2008 May; 355(1-2):307-13. PubMed ID: 18242022
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.