These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 12480947)

  • 21. Folding of β-Barrel Membrane Proteins into Lipid Membranes by Site-Directed Fluorescence Spectroscopy.
    Gerlach L; Gholami O; Schürmann N; Kleinschmidt JH
    Methods Mol Biol; 2019; 2003():465-492. PubMed ID: 31218630
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Folding kinetics of staphylococcal nuclease studied by tryptophan engineering and rapid mixing methods.
    Maki K; Cheng H; Dolgikh DA; Roder H
    J Mol Biol; 2007 Apr; 368(1):244-55. PubMed ID: 17331534
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of charge and hydrophobicity in peptide-lipid interaction: a comparative study based on tryptophan fluorescence measurements combined with the use of aqueous and hydrophobic quenchers.
    De Kroon AI; Soekarjo MW; De Gier J; De Kruijff B
    Biochemistry; 1990 Sep; 29(36):8229-40. PubMed ID: 2252886
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human Dystrophin Structural Changes upon Binding to Anionic Membrane Lipids.
    Dos Santos Morais R; Delalande O; Pérez J; Mias-Lucquin D; Lagarrigue M; Martel A; Molza AE; Chéron A; Raguénès-Nicol C; Chenuel T; Bondon A; Appavou MS; Le Rumeur E; Combet S; Hubert JF
    Biophys J; 2018 Oct; 115(7):1231-1239. PubMed ID: 30197181
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Physical properties of dystrophin rod domain.
    Kahana E; Flood G; Gratzer WB
    Cell Motil Cytoskeleton; 1997; 36(3):246-52. PubMed ID: 9067620
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of the transmembrane orientation and interhelical interactions within membranes by hydrophobic helix length.
    Ren J; Lew S; Wang J; London E
    Biochemistry; 1999 May; 38(18):5905-12. PubMed ID: 10231543
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Interaction of the delta-endotoxin CytA from Bacillus thuringiensis var. israelensis with lipid membranes.
    Butko P; Huang F; Pusztai-Carey M; Surewicz WK
    Biochemistry; 1997 Oct; 36(42):12862-8. PubMed ID: 9335544
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Orientation of LamB signal peptides in bilayers: influence of lipid probes on peptide binding and interpretation of fluorescence quenching data.
    Voglino L; Simon SA; McIntosh TJ
    Biochemistry; 1999 Jun; 38(23):7509-16. PubMed ID: 10360948
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Tryptophan fluorescence study of the interaction of penetratin peptides with model membranes.
    Christiaens B; Symoens S; Verheyden S; Engelborghs Y; Joliot A; Prochiantz A; Vandekerckhove J; Rosseneu M; Vanloo B
    Eur J Biochem; 2002 Jun; 269(12):2918-26. PubMed ID: 12071955
    [TBL] [Abstract][Full Text] [Related]  

  • 30. conformation and phasing of dystrophin structural repeats.
    Kahana E; Marsh PJ; Henry AJ; Way M; Gratzer WB
    J Mol Biol; 1994 Jan; 235(4):1271-7. PubMed ID: 8308889
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Conformational changes of urea-denatured colicin E1 induced by phospholipid membranes.
    Wu Y; Sui SF
    J Pept Res; 1999 May; 53(5):477-85. PubMed ID: 10424341
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Steady-state and picosecond-time-resolved fluorescence studies on the recombinant heme domain of Bacillus megaterium cytochrome P-450.
    Khan KK; Mazumdar S; Modi S; Sutcliffe M; Roberts GC; Mitra S
    Eur J Biochem; 1997 Mar; 244(2):361-70. PubMed ID: 9119001
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Tryptophan spectroscopy studies and black lipid bilayer analysis indicate that the oligomeric structure of Cry1Ab toxin from Bacillus thuringiensis is the membrane-insertion intermediate.
    Rausell C; Muñoz-Garay C; Miranda-CassoLuengo R; Gómez I; Rudiño-Piñera E; Soberón M; Bravo A
    Biochemistry; 2004 Jan; 43(1):166-74. PubMed ID: 14705942
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of aromatic residues at the lipid-water interface in micelle-bound bacteriophage M13 major coat protein.
    Yuen CT; Davidson AR; Deber CM
    Biochemistry; 2000 Dec; 39(51):16155-62. PubMed ID: 11123944
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Stability of the dystrophin rod domain fold: evidence for nested repeating units.
    Calvert R; Kahana E; Gratzer WB
    Biophys J; 1996 Sep; 71(3):1605-10. PubMed ID: 8874034
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cofactor and tryptophan accessibility and unfolding of brain glutamate decarboxylase.
    Rust E; Martin DL; Chen CH
    Arch Biochem Biophys; 2001 Aug; 392(2):333-40. PubMed ID: 11488610
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Differential interactions of two local anesthetics with phospholipid membrane and nonerythroid spectrin: Localization in presence of cholesterol and ganglioside, GM1.
    Chakrabarti A; Patra M
    Biochim Biophys Acta; 2015 Mar; 1848(3):821-32. PubMed ID: 25482358
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrostatic and hydrophobic contributions to the folding mechanism of apocytochrome c driven by the interaction with lipid.
    Rankin SE; Watts A; Pinheiro TJ
    Biochemistry; 1998 Sep; 37(36):12588-95. PubMed ID: 9730831
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anionic phospholipids modulate peptide insertion into membranes.
    Liu LP; Deber CM
    Biochemistry; 1997 May; 36(18):5476-82. PubMed ID: 9154930
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Interaction of the lantibiotic nisin with membranes revealed by fluorescence quenching of an introduced tryptophan.
    Martin I; Ruysschaert JM; Sanders D; Giffard CJ
    Eur J Biochem; 1996 Jul; 239(1):156-64. PubMed ID: 8706701
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.