These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 12481022)
1. Oxygen-mediated diffusion of oxygen vacancies on the TiO2(110) surface. Schaub R; Wahlström E; Rønnau A; Lagsgaard E; Stensgaard I; Besenbacher F Science; 2003 Jan; 299(5605):377-9. PubMed ID: 12481022 [TBL] [Abstract][Full Text] [Related]
2. Electron transfer-induced dynamics of oxygen molecules on the TiO2(110) surface. Wahlström E; Vestergaard EK; Schaub R; Rønnau A; Vestergaard M; Laegsgaard E; Stensgaard I; Besenbacher F Science; 2004 Jan; 303(5657):511-3. PubMed ID: 14739455 [TBL] [Abstract][Full Text] [Related]
3. Adsorption, diffusion, and dissociation of molecular oxygen at defected TiO2(110): a density functional theory study. Rasmussen MD; Molina LM; Hammer B J Chem Phys; 2004 Jan; 120(2):988-97. PubMed ID: 15267936 [TBL] [Abstract][Full Text] [Related]
4. O2 and vacancy diffusion on rutile(110): pathways and electronic properties. Tilocca A; Selloni A Chemphyschem; 2005 Sep; 6(9):1911-6. PubMed ID: 16080219 [TBL] [Abstract][Full Text] [Related]
5. Chain structures of surface hydroxyl groups formed via line oxygen vacancies on TiO2(110) surfaces studied using noncontact atomic force microscopy. Namai Y; Matsuoka O J Phys Chem B; 2005 Dec; 109(50):23948-54. PubMed ID: 16375383 [TBL] [Abstract][Full Text] [Related]
6. First-principles calculations of hydrogen diffusion on rutile TiO2(110) surfaces. Kajita S; Minato T; Kato HS; Kawai M; Nakayama T J Chem Phys; 2007 Sep; 127(10):104709. PubMed ID: 17867771 [TBL] [Abstract][Full Text] [Related]
7. Formation and diffusion of oxygen-vacancy pairs on TiO2(110)-(1x1). Cui X; Wang B; Wang Z; Huang T; Zhao Y; Yang J; Hou JG J Chem Phys; 2008 Jul; 129(4):044703. PubMed ID: 18681666 [TBL] [Abstract][Full Text] [Related]
8. Pinning mass-selected Agn clusters on the TiO2(110)-1x1 surface via deposition at high kinetic energy. Tong X; Benz L; Chrétien S; Kemper P; Kolmakov A; Metiu H; Bowers MT; Buratto SK J Chem Phys; 2005 Nov; 123(20):204701. PubMed ID: 16351287 [TBL] [Abstract][Full Text] [Related]
9. The role of surface and subsurface point defects for chemical model studies on TiO2: a first-principles theoretical study of formaldehyde bonding on rutile TiO2(110). Haubrich J; Kaxiras E; Friend CM Chemistry; 2011 Apr; 17(16):4496-506. PubMed ID: 21433119 [TBL] [Abstract][Full Text] [Related]
10. Density functional study of the interaction between small Au clusters, Au(n) (n=1-7) and the rutile TiO2 surface. II. Adsorption on a partially reduced surface. Chrétien S; Metiu H J Chem Phys; 2007 Dec; 127(24):244708. PubMed ID: 18163696 [TBL] [Abstract][Full Text] [Related]
11. O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2: the importance of spin conservation. Chrétien S; Metiu H J Chem Phys; 2008 Aug; 129(7):074705. PubMed ID: 19044790 [TBL] [Abstract][Full Text] [Related]
12. Molecular dynamics investigation of oxygen vacancy diffusion in rutile. Jug K; Nair NN; Bredow T Phys Chem Chem Phys; 2005 Jul; 7(13):2616-21. PubMed ID: 16189572 [TBL] [Abstract][Full Text] [Related]
13. Interaction of CO2 with oxygen adatoms on rutile TiO2(110). Lin X; Wang ZT; Lyubinetsky I; Kay BD; Dohnálek Z Phys Chem Chem Phys; 2013 May; 15(17):6190-5. PubMed ID: 23364757 [TBL] [Abstract][Full Text] [Related]
14. First principles study of CO oxidation on TiO2(110): the role of surface oxygen vacancies. Wu X; Selloni A; Nayak SK J Chem Phys; 2004 Mar; 120(9):4512-6. PubMed ID: 15268619 [TBL] [Abstract][Full Text] [Related]