BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 12481048)

  • 21.
    Jiang Y; Li Z; Liu X; Zhu T; Xie K; Hou Q; Yan T; Niu C; Zhang S; Yang M; Xie R; Wang J; Li J; An X; Wan X
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360681
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Defining the developmental program leading to meiosis in maize.
    Nelms B; Walbot V
    Science; 2019 Apr; 364(6435):52-56. PubMed ID: 30948545
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondrial ORF79 levels determine pollen abortion in cytoplasmic male sterile rice.
    Kazama T; Itabashi E; Fujii S; Nakamura T; Toriyama K
    Plant J; 2016 Mar; 85(6):707-16. PubMed ID: 26850149
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coordinated regulation of starch synthesis in maize endosperm by microRNAs and DNA methylation.
    Hu Y; Li Y; Weng J; Liu H; Yu G; Liu Y; Xiao Q; Huang H; Wang Y; Wei B; Cao Y; Xie Y; Long T; Li H; Zhang J; Li X; Huang Y
    Plant J; 2021 Jan; 105(1):108-123. PubMed ID: 33098697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of the 14-3-3 C-terminal region in the interaction with the plasma membrane H+-ATPase.
    Visconti S; Camoni L; Marra M; Aducci P
    Plant Cell Physiol; 2008 Dec; 49(12):1887-97. PubMed ID: 19001422
    [TBL] [Abstract][Full Text] [Related]  

  • 26. AtSTP6, a new pollen-specific H+-monosaccharide symporter from Arabidopsis.
    Scholz-Starke J; Büttner M; Sauer N
    Plant Physiol; 2003 Jan; 131(1):70-7. PubMed ID: 12529516
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flowers.
    Carlsson J; Lagercrantz U; Sundström J; Teixeira R; Wellmer F; Meyerowitz EM; Glimelius K
    Plant J; 2007 Feb; 49(3):452-62. PubMed ID: 17217466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolutionary conservation and expression patterns of maize starch branching enzyme I and IIb genes suggests isoform specialization.
    Gao M; Fisher DK; Kim KN; Shannon JC; Guiltinan MJ
    Plant Mol Biol; 1996 Mar; 30(6):1223-32. PubMed ID: 8704131
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancing sucrose synthase activity results in increased levels of starch and ADP-glucose in maize (Zea mays L.) seed endosperms.
    Li J; Baroja-Fernández E; Bahaji A; Muñoz FJ; Ovecka M; Montero M; Sesma MT; Alonso-Casajús N; Almagro G; Sánchez-López AM; Hidalgo M; Zamarbide M; Pozueta-Romero J
    Plant Cell Physiol; 2013 Feb; 54(2):282-94. PubMed ID: 23292602
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ZmbZIP91 regulates expression of starch synthesis-related genes by binding to ACTCAT elements in their promoters.
    Chen J; Yi Q; Cao Y; Wei B; Zheng L; Xiao Q; Xie Y; Gu Y; Li Y; Huang H; Wang Y; Hou X; Long T; Zhang J; Liu H; Liu Y; Yu G; Huang Y
    J Exp Bot; 2016 Mar; 67(5):1327-38. PubMed ID: 26689855
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Cytological observation and DNA methylation analysis of two new cytoplasmic male sterile lines of maize during microsporogenesis].
    Zhang Y; Yi H; Fang M; Rong T; Cao M
    Yi Chuan; 2014 Oct; 36(10):1021-6. PubMed ID: 25406250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rice Immature Pollen 1 (RIP1) is a regulator of late pollen development.
    Han MJ; Jung KH; Yi G; Lee DY; An G
    Plant Cell Physiol; 2006 Nov; 47(11):1457-72. PubMed ID: 16990291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A nuclear restorer-of-fertility mutation disrupts accumulation of mitochondrial ATP synthase subunit alpha in developing pollen of S male-sterile maize.
    Wen L; Ruesch KL; Ortega VM; Kamps TL; Gabay-Laughnan S; Chase CD
    Genetics; 2003 Oct; 165(2):771-9. PubMed ID: 14573487
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Class B beta-expansins are needed for pollen separation and stigma penetration.
    Valdivia ER; Stephenson AG; Durachko DM; Cosgrove D
    Sex Plant Reprod; 2009 Sep; 22(3):141-52. PubMed ID: 20033435
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proteomic changes in maize as a response to heavy metal (lead) stress revealed by iTRAQ quantitative proteomics.
    Li GK; Gao J; Peng H; Shen YO; Ding HP; Zhang ZM; Pan GT; Lin HJ
    Genet Mol Res; 2016 Jan; 15(1):. PubMed ID: 26909923
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Retrotransposon insertion into the maize waxy gene results in tissue-specific RNA processing.
    Marillonnet S; Wessler SR
    Plant Cell; 1997 Jun; 9(6):967-78. PubMed ID: 9212470
    [TBL] [Abstract][Full Text] [Related]  

  • 37. SWEET Transporters for the Nourishment of Embryonic Tissues during Maize Germination.
    López-Coria M; Sánchez-Sánchez T; Martínez-Marcelo VH; Aguilera-Alvarado GP; Flores-Barrera M; King-Díaz B; Sánchez-Nieto S
    Genes (Basel); 2019 Oct; 10(10):. PubMed ID: 31591342
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular and biochemical mechanisms in maize endosperm development: the role of pyruvate-Pi-dikinase and Opaque-2 in the control of C/N ratio.
    Prioul JL; Méchin V; Damerval C
    C R Biol; 2008 Oct; 331(10):772-9. PubMed ID: 18926491
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of chilling on male gametophyte development in rice.
    Mamun EA; Alfred S; Cantrill LC; Overall RL; Sutton BG
    Cell Biol Int; 2006 Jul; 30(7):583-91. PubMed ID: 16730464
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A putative plant organelle RNA recognition protein gene is essential for maize kernel development.
    Chettoor AM; Yi G; Gomez E; Hueros G; Meeley RB; Becraft PW
    J Integr Plant Biol; 2015 Mar; 57(3):236-46. PubMed ID: 24985738
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.