BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 12481068)

  • 21. Carotenoid-deficient maize seedlings fail to accumulate light-harvesting chlorophyll a/b binding protein (LHCP) mRNA.
    Mayfield SP; Taylor WC
    Eur J Biochem; 1984 Oct; 144(1):79-84. PubMed ID: 6383828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcriptional and physiological analyses of Fe deficiency response in maize reveal the presence of Strategy I components and Fe/P interactions.
    Zanin L; Venuti S; Zamboni A; Varanini Z; Tomasi N; Pinton R
    BMC Genomics; 2017 Feb; 18(1):154. PubMed ID: 28193158
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitric oxide and reactive oxygen species do not elicit hypersensitive cell death but induce apoptosis in the adjacent cells during the defense response of oat.
    Tada Y; Mori T; Shinogi T; Yao N; Takahashi S; Betsuyaku S; Sakamoto M; Park P; Nakayashiki H; Tosa Y; Mayama S
    Mol Plant Microbe Interact; 2004 Mar; 17(3):245-53. PubMed ID: 15000391
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of nitric oxide dependence on nitric oxide synthase-like activity in the water stress signaling of maize seedling.
    Hao GP; Xing Y; Zhang JH
    J Integr Plant Biol; 2008 Apr; 50(4):435-42. PubMed ID: 18713377
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of ascorbate and the Mehler peroxidase reaction on non-photochemical quenching of chlorophyll fluorescence in maize mesophyll chloroplasts.
    Ivanov B; Edwards G
    Planta; 2000 Apr; 210(5):765-74. PubMed ID: 10805448
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nitrate sensing by the maize root apex transition zone: a merged transcriptomic and proteomic survey.
    Trevisan S; Manoli A; Ravazzolo L; Botton A; Pivato M; Masi A; Quaggiotti S
    J Exp Bot; 2015 Jul; 66(13):3699-715. PubMed ID: 25911739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The function of hydrogen sulphide in iron availability: Sulfur nutrient or signaling molecule?
    Chen J; Shangguan ZP; Zheng HL
    Plant Signal Behav; 2016 Jun; 11(6):e1132967. PubMed ID: 26906467
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nitric oxide signaling is involved in the response to iron deficiency in the woody plant Malus xiaojinensis.
    Zhai L; Xiao D; Sun C; Wu T; Han Z; Zhang X; Xu X; Wang Y
    Plant Physiol Biochem; 2016 Dec; 109():515-524. PubMed ID: 27835849
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Acclimation of mesophyll and bundle sheath chloroplasts of maize to different irradiances during growth.
    Drozak A; Romanowska E
    Biochim Biophys Acta; 2006 Nov; 1757(11):1539-46. PubMed ID: 17034754
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Involvement of nitric oxide in regulation of salt stress-induced ABA accumulation in maize seedling].
    Chen K; Li J; Tang J; Zhao FG; Liu X
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Oct; 32(5):577-82. PubMed ID: 17075182
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nitric oxide reduces nontransferrin-bound iron transport in HepG2 cells.
    Barisani D; Cairo G; Ginelli E; Marozzi A; Conte D
    Hepatology; 1999 Feb; 29(2):464-70. PubMed ID: 9918923
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A large population of small chloroplasts in tobacco leaf cells allows more effective chloroplast movement than a few enlarged chloroplasts.
    Jeong WJ; Park YI; Suh K; Raven JA; Yoo OJ; Liu JR
    Plant Physiol; 2002 May; 129(1):112-21. PubMed ID: 12011343
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitric oxide mediates brassinosteroid-induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves.
    Zhang A; Zhang J; Zhang J; Ye N; Zhang H; Tan M; Jiang M
    Plant Cell Physiol; 2011 Jan; 52(1):181-92. PubMed ID: 21134899
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Protective effect of nitric oxide on iron deficiency-induced oxidative stress in maize (Zea mays).
    Sun B; Jing Y; Chen K; Song L; Chen F; Zhang L
    J Plant Physiol; 2007 May; 164(5):536-43. PubMed ID: 16690167
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of nitric oxide in control of light adaptive cone photomechanical movements in retinas of lower vertebrates: a comparative species study.
    Angotzi AR; Hirano J; Vallerga S; Djamgoz MB
    Nitric Oxide; 2002 Mar; 6(2):200-4. PubMed ID: 11890744
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Plastids undifferentiated, a nuclear mutation that disrupts plastid differentiation in Zea mays L.
    Roth R; Sawers RJ; Munn HL; Langdale JA
    Planta; 2001 Aug; 213(4):647-58. PubMed ID: 11556798
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elevation of NO production increases Fe immobilization in the Fe-deficiency roots apoplast by decreasing pectin methylation of cell wall.
    Ye YQ; Jin CW; Fan SK; Mao QQ; Sun CL; Yu Y; Lin XY
    Sci Rep; 2015 Jun; 5():10746. PubMed ID: 26073914
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitric oxide negatively modulates wound signaling in tomato plants.
    Orozco-Cárdenas ML; Ryan CA
    Plant Physiol; 2002 Sep; 130(1):487-93. PubMed ID: 12226527
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deciphering the protective role of nitric oxide against salt stress at the physiological and proteomic levels in maize.
    Bai X; Yang L; Yang Y; Ahmad P; Yang Y; Hu X
    J Proteome Res; 2011 Oct; 10(10):4349-64. PubMed ID: 21846115
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lead-induced nitric oxide generation plays a critical role in lead uptake by Pogonatherum crinitum root cells.
    Yu Q; Sun L; Jin H; Chen Q; Chen Z; Xu M
    Plant Cell Physiol; 2012 Oct; 53(10):1728-36. PubMed ID: 22904111
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.