BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 12481382)

  • 41. Bacterial resistance to quinolone antibiotics in Poland.
    Roliński Z; Kowalski C; Zań R; Sobol M
    J Vet Med B Infect Dis Vet Public Health; 2002 Apr; 49(3):160-2. PubMed ID: 12019949
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mechanisms of adrenomedullin antimicrobial action.
    Allaker RP; Grosvenor PW; McAnerney DC; Sheehan BE; Srikanta BH; Pell K; Kapas S
    Peptides; 2006 Apr; 27(4):661-6. PubMed ID: 16226342
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inhibition of conjugal transfer by new quinolinic compounds.
    Oliva B; Selan L; Ravagnan G; Renzini G
    Chemioterapia; 1985 Jun; 4(3):199-201. PubMed ID: 3161641
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [The effect of ascorbic acid on the antibacterial activity of selected antibiotics and synthetic chemotherapeutic agents in in vitro conditions].
    Belicová A; Dobias J; Ebringer L; Krajcovic J
    Ceska Slov Farm; 2000 May; 49(3):134-8. PubMed ID: 10953458
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Potentiation of antimalarial drug action by chlorpheniramine against multidrug-resistant Plasmodium falciparum in vitro.
    Nakornchai S; Konthiang P
    Parasitol Int; 2006 Sep; 55(3):195-9. PubMed ID: 16750932
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bactericidal activity and target preference of a piperazinyl-cross-linked ciprofloxacin dimer with Staphylococcus aureus and Escherichia coli.
    Zhao X; Quinn B; Kerns R; Drlica K
    J Antimicrob Chemother; 2006 Dec; 58(6):1283-6. PubMed ID: 17003060
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The spectrum of Gram-positive bloodstream infections in patients with hematologic malignancies, and the in vitro activity of various quinolones against Gram-positive bacteria isolated from cancer patients.
    Rolston KV; Yadegarynia D; Kontoyiannis DP; Raad II; Ho DH
    Int J Infect Dis; 2006 May; 10(3):223-30. PubMed ID: 16439177
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vitro antimicrobial activity of a novel propolis formulation (Actichelated propolis).
    Drago L; De Vecchi E; Nicola L; Gismondo MR
    J Appl Microbiol; 2007 Nov; 103(5):1914-21. PubMed ID: 17953601
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Interactions of the 4-quinolones with other antibacterials.
    Lewin CS; Smith JT
    J Med Microbiol; 1989 Jul; 29(3):221-7. PubMed ID: 2664184
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis and antibacterial activity of N-(5-benzylthio-1,3,4-thiadiazol-2-yl) and N-(5-benzylsulfonyl-1,3,4-thiadiazol-2-yl)piperazinyl quinolone derivatives.
    Foroumadi A; Emami S; Hassanzadeh A; Rajaee M; Sokhanvar K; Moshafi MH; Shafiee A
    Bioorg Med Chem Lett; 2005 Oct; 15(20):4488-92. PubMed ID: 16105736
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Alpha-helical domain is essential for antimicrobial activity of high mobility group nucleosomal binding domain 2 (HMGN2).
    Feng Y; Huang N; Wu Q; Bao L; Wang BY
    Acta Pharmacol Sin; 2005 Sep; 26(9):1087-92. PubMed ID: 16115376
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Low-level quinolone-resistance in multi-drug resistant typhoid.
    Mirza SH; Khan MA
    J Coll Physicians Surg Pak; 2008 Jan; 18(1):13-6. PubMed ID: 18452661
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hydrazones of 2-aryl-quinoline-4-carboxylic acid hydrazides: synthesis and preliminary evaluation as antimicrobial agents.
    Metwally KA; Abdel-Aziz LM; Lashine el-SM; Husseiny MI; Badawy RH
    Bioorg Med Chem; 2006 Dec; 14(24):8675-82. PubMed ID: 16949294
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis of some novel 2-oxo-pyrano(2,3-b)- and 2-oxo-pyrido(2,3-b)quinoline derivatives as potential antimalarial, diuretic, clastogenic and antimicrobial agents.
    Sekar M; Prasad KJ
    J Chem Technol Biotechnol; 1998 May; 72(1):50-4. PubMed ID: 9628041
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Urine bactericidal activity against resistant Escherichia coli in an in vitro pharmacodynamic model simulating urine concentrations obtained after 2000/125 mg sustained-release co-amoxiclav and 400 mg norfloxacin administration.
    Alou L; Aguilar L; Sevillano D; Giménez MJ; Cafini F; Valero E; Relaño MT; Prieto J
    J Antimicrob Chemother; 2006 Apr; 57(4):714-9. PubMed ID: 16492718
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quinolone accumulation by Pseudomonas aeruginosa, Staphylococcus aureus and Escherichia coli.
    Piddock LJ; Jin YF; Ricci V; Asuquo AE
    J Antimicrob Chemother; 1999 Jan; 43(1):61-70. PubMed ID: 10381102
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Validity of nalidixic acid screening in fluoroquinolone-resistant typhoid salmonellae.
    Butt T; Khan MY; Ahmad RN; Salman M; Afzal RK
    J Coll Physicians Surg Pak; 2006 Jan; 16(1):31-4. PubMed ID: 16441985
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Antibiotic resistance of bacterial strains in paediatric infections: there are resistance and resistance!].
    Bingen E
    Arch Pediatr; 2008 Oct; 15 Suppl 2():S49-52. PubMed ID: 19000854
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Increased antibacterial activity of DW286, a novel fluoronaphthyridone antibiotic, against Staphylococcus aureus strains with defined mutations in DNA gyrase and topoisomerase IV.
    Yun HJ; Min YH; Jo YW; Shim MJ; Choi EC
    Int J Antimicrob Agents; 2005 Apr; 25(4):334-7. PubMed ID: 15784314
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Comparative quantification of the in vitro activity of veterinary fluoroquinolones.
    Grobbel M; Lübke-Becker A; Wieler LH; Froyman R; Friederichs S; Filios S
    Vet Microbiol; 2007 Sep; 124(1-2):73-81. PubMed ID: 17498893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.