These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 12481934)
1. Fatigue-induced change in corticospinal drive to back muscles in elite rowers. Fulton RC; Strutton PH; McGregor AH; Davey NJ Exp Physiol; 2002 Sep; 87(5):593-600. PubMed ID: 12481934 [TBL] [Abstract][Full Text] [Related]
2. Facilitation of cortically evoked potentials with motor imagery during post-exercise depression of corticospinal excitability. Pitcher JB; Robertson AL; Clover EC; Jaberzadeh S Exp Brain Res; 2005 Jan; 160(4):409-17. PubMed ID: 15502993 [TBL] [Abstract][Full Text] [Related]
3. Spread of electrical activity at cortical level after repetitive magnetic stimulation in normal subjects. Lorenzano C; Gilio F; Inghilleri M; Conte A; Fofi L; Manfredi M; Berardelli A Exp Brain Res; 2002 Nov; 147(2):186-92. PubMed ID: 12410333 [TBL] [Abstract][Full Text] [Related]
4. Asymmetry of motor cortex excitability during a simple motor task: relationships with handedness and manual performance. Brouwer B; Sale MV; Nordstrom MA Exp Brain Res; 2001 Jun; 138(4):467-76. PubMed ID: 11465745 [TBL] [Abstract][Full Text] [Related]
5. Alterations in corticospinal excitability with imposed vs. voluntary fatigue in human hand muscles. Pitcher JB; Miles TS J Appl Physiol (1985); 2002 May; 92(5):2131-8. PubMed ID: 11960966 [TBL] [Abstract][Full Text] [Related]
6. Different effects of fatiguing exercise on corticospinal and transcallosal excitability in human hand area motor cortex. Edgley SA; Winter AP Exp Brain Res; 2004 Dec; 159(4):530-6. PubMed ID: 15249989 [TBL] [Abstract][Full Text] [Related]
7. Effect of fatigue-related group III/IV afferent firing on intracortical inhibition and facilitation in hand muscles. Latella C; van der Groen O; Ruas CV; Taylor JL J Appl Physiol (1985); 2020 Jan; 128(1):149-158. PubMed ID: 31725359 [TBL] [Abstract][Full Text] [Related]
8. Specificity and functional impact of post-exercise depression of cortically evoked motor potentials in man. Humphry AT; Lloyd-Davies EJ; Teare RJ; Williams KE; Strutton PH; Davey NJ Eur J Appl Physiol; 2004 Jun; 92(1-2):211-8. PubMed ID: 15045505 [TBL] [Abstract][Full Text] [Related]
9. Changes in corticospinal motor excitability induced by non-motor linguistic tasks. Papathanasiou I; Filipović SR; Whurr R; Rothwell JC; Jahanshahi M Exp Brain Res; 2004 Jan; 154(2):218-25. PubMed ID: 14534770 [TBL] [Abstract][Full Text] [Related]
10. Relaxation from a voluntary contraction is preceded by increased excitability of motor cortical inhibitory circuits. Buccolieri A; Abbruzzese G; Rothwell JC J Physiol; 2004 Jul; 558(Pt 2):685-95. PubMed ID: 15181164 [TBL] [Abstract][Full Text] [Related]
12. Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold 5 Hz repetitive TMS to the primary motor cortex. Peinemann A; Reimer B; Löer C; Quartarone A; Münchau A; Conrad B; Siebner HR Clin Neurophysiol; 2004 Jul; 115(7):1519-26. PubMed ID: 15203053 [TBL] [Abstract][Full Text] [Related]
13. Reduced intracortical inhibition and facilitation of corticospinal neurons in musicians. Nordstrom MA; Butler SL Exp Brain Res; 2002 Jun; 144(3):336-42. PubMed ID: 12021815 [TBL] [Abstract][Full Text] [Related]
14. Decline in voluntary activation contributes to reduced maximal performance of fatigued human lower limb muscles. Mileva KN; Sumners DP; Bowtell JL Eur J Appl Physiol; 2012 Dec; 112(12):3959-70. PubMed ID: 22434254 [TBL] [Abstract][Full Text] [Related]
15. Motor imagery and electrical stimulation reproduce corticospinal excitability at levels similar to voluntary muscle contraction. Kaneko F; Hayami T; Aoyama T; Kizuka T J Neuroeng Rehabil; 2014 Jun; 11():94. PubMed ID: 24902891 [TBL] [Abstract][Full Text] [Related]
16. Short-interval cortical inhibition and corticomotor excitability with fatiguing hand exercise: a central adaptation to fatigue? Benwell NM; Sacco P; Hammond GR; Byrnes ML; Mastaglia FL; Thickbroom GW Exp Brain Res; 2006 Apr; 170(2):191-8. PubMed ID: 16328285 [TBL] [Abstract][Full Text] [Related]
17. Effects of low-frequency whole-body vibration on motor-evoked potentials in healthy men. Mileva KN; Bowtell JL; Kossev AR Exp Physiol; 2009 Jan; 94(1):103-16. PubMed ID: 18658234 [TBL] [Abstract][Full Text] [Related]
18. Influence of sensory deprivation and perturbation of trigeminal afferent fibers on corticomotor control of human tongue musculature. Halkjaer L; Melsen B; McMillan AS; Svensson P Exp Brain Res; 2006 Apr; 170(2):199-205. PubMed ID: 16328282 [TBL] [Abstract][Full Text] [Related]
19. The response to paired motor cortical stimuli is abolished at a spinal level during human muscle fatigue. McNeil CJ; Martin PG; Gandevia SC; Taylor JL J Physiol; 2009 Dec; 587(Pt 23):5601-12. PubMed ID: 19805743 [TBL] [Abstract][Full Text] [Related]
20. Cortical control of erector spinae muscles during arm abduction in humans. Kuppuswamy A; Catley M; King NK; Strutton PH; Davey NJ; Ellaway PH Gait Posture; 2008 Apr; 27(3):478-84. PubMed ID: 17644335 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]