These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 12482133)
1. Predicted alterations in tertiary structure of the N-terminus of Na(+)/K(+)-ATPase alpha-subunit caused by phosphorylation or acidic replacement of the PKC phosphorylation site Ser-23. Brandt W; Anders A; Vasilets LA Cell Biochem Biophys; 2002; 37(2):83-95. PubMed ID: 12482133 [TBL] [Abstract][Full Text] [Related]
2. alpha 1 but not alpha 2 or alpha 3 isoforms of Na,K-ATPase are efficiently phosphorylated in a novel protein kinase C motif. Béguin P; Peitsch MC; Geering K Biochemistry; 1996 Nov; 35(45):14098-108. PubMed ID: 8916895 [TBL] [Abstract][Full Text] [Related]
3. Protein kinase C phosphorylation of purified Na,K-ATPase: C-terminal phosphorylation sites at the alpha- and gamma-subunits close to the inner face of the plasma membrane. Mahmmoud YA; Cornelius F Biophys J; 2002 Apr; 82(4):1907-19. PubMed ID: 11916849 [TBL] [Abstract][Full Text] [Related]
4. Contrary to rat-type, human-type Na,K-ATPase is phosphorylated at the same amino acid by hormones that produce opposite effects on enzyme activity. Efendiev R; Pedemonte CH J Am Soc Nephrol; 2006 Jan; 17(1):31-8. PubMed ID: 16338965 [TBL] [Abstract][Full Text] [Related]
5. The isoform-specific region of the Na,K-ATPase catalytic subunit: role in enzyme kinetics and regulation by protein kinase C. Duran MJ; Pierre SV; Carr DL; Pressley TA Biochemistry; 2004 Dec; 43(51):16174-83. PubMed ID: 15610011 [TBL] [Abstract][Full Text] [Related]
6. Functional significance of the shark Na,K-ATPase N-terminal domain. Is the structurally variable N-Terminus involved in tissue-specific regulation by FXYD proteins? Cornelius F; Mahmmoud YA; Meischke L; Cramb G Biochemistry; 2005 Oct; 44(39):13051-62. PubMed ID: 16185073 [TBL] [Abstract][Full Text] [Related]
7. Mechanisms of PKC-dependent Na+ K+ ATPase phosphorylation in the rat kidney with chronic renal failure. Bertuccio CA; Arrizurieta EE; Ibarra FR; Martín RS Ren Fail; 2007; 29(1):13-22. PubMed ID: 17365905 [TBL] [Abstract][Full Text] [Related]
8. Carboxy-terminal regions of the sarcoplasmic/endoplasmic reticulum Ca(2+)- and the Na+/K(+)-ATPases control their K+ sensitivity. Ishii T; Hata F; Lemas MV; Fambrough DM; Takeyasu K Biochemistry; 1997 Jan; 36(2):442-51. PubMed ID: 9003197 [TBL] [Abstract][Full Text] [Related]
9. Phosphorylation of the Na+,K+-ATPase and the H+,K+-ATPase. Poulsen H; Morth P; Egebjerg J; Nissen P FEBS Lett; 2010 Jun; 584(12):2589-95. PubMed ID: 20412804 [TBL] [Abstract][Full Text] [Related]
10. TNP-8N3-ADP photoaffinity labeling of two Na,K-ATPase sequences under separate Na+ plus K+ control. Ward DG; Taylor M; Lilley KS; Cavieres JD Biochemistry; 2006 Mar; 45(10):3460-71. PubMed ID: 16519541 [TBL] [Abstract][Full Text] [Related]
11. 20-Hydroxyeicosa-tetraenoic acid (20 HETE) activates protein kinase C. Role in regulation of rat renal Na+,K+-ATPase. Nowicki S; Chen SL; Aizman O; Cheng XJ; Li D; Nowicki C; Nairn A; Greengard P; Aperia A J Clin Invest; 1997 Mar; 99(6):1224-30. PubMed ID: 9077530 [TBL] [Abstract][Full Text] [Related]
12. Mutations of Ser-23 of the alpha1 subunit of the rat Na+/K+-ATPase to negatively charged amino acid residues mimic the functional effect of PKC-mediated phosphorylation. Vasilets LA; Postina R; Kirichenko SN FEBS Lett; 1999 Jul; 455(1-2):8-12. PubMed ID: 10428461 [TBL] [Abstract][Full Text] [Related]
13. Residues within transmembrane domains 4 and 6 of the Na,K-ATPase alpha subunit are important for Na+ selectivity. Sánchez G; Blanco G Biochemistry; 2004 Jul; 43(28):9061-74. PubMed ID: 15248763 [TBL] [Abstract][Full Text] [Related]
14. Aspects of gene structure and functional regulation of the isozymes of Na,K-ATPase. Jorgensen PL Cell Mol Biol (Noisy-le-grand); 2001 Mar; 47(2):231-8. PubMed ID: 11354995 [TBL] [Abstract][Full Text] [Related]
15. Isoform-specific effects of charged residues at borders of the M1-M2 loop of the Na,K-ATPase alpha subunit. Coppi MV; Compton LA; Guidotti G Biochemistry; 1999 Feb; 38(8):2494-505. PubMed ID: 10029544 [TBL] [Abstract][Full Text] [Related]
16. Domain swapping between Na,K- and H,K-ATPase identifies regions that specify Na,K-ATPase activity. Canfield VA; Levenson R Biochemistry; 1998 May; 37(20):7509-16. PubMed ID: 9585565 [TBL] [Abstract][Full Text] [Related]
17. Conformational alterations resulting from mutations in cytoplasmic domains of the alpha subunit of the Na,K-ATPase. Blostein R; Daly SE; Boxenbaum N; Lane LK; Arguello JM; Lingrel JB; Karlish SJ; Caplan MJ; Dunbar L Acta Physiol Scand Suppl; 1998 Aug; 643():275-81. PubMed ID: 9789570 [TBL] [Abstract][Full Text] [Related]
18. Modulation of FXYD interaction with Na,K-ATPase by anionic phospholipids and protein kinase phosphorylation. Cornelius F; Mahmmoud YA Biochemistry; 2007 Mar; 46(9):2371-9. PubMed ID: 17288456 [TBL] [Abstract][Full Text] [Related]
19. ATP-induced conformational changes of the nucleotide-binding domain of Na,K-ATPase. Hilge M; Siegal G; Vuister GW; Güntert P; Gloor SM; Abrahams JP Nat Struct Biol; 2003 Jun; 10(6):468-74. PubMed ID: 12730684 [TBL] [Abstract][Full Text] [Related]
20. Glutamic acid 472 and lysine 480 of the sodium pump alpha 1 subunit are essential for activity. Their conservation in pyrophosphatases suggests their involvement in recognition of ATP phosphates. Scheiner-Bobis G; Schreiber S Biochemistry; 1999 Jul; 38(29):9198-208. PubMed ID: 10413494 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]