These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 12482251)

  • 1. Refractive index of the crystalline lens in young and aged eyes.
    Garner LF; Ooi CS; Smith G
    Clin Exp Optom; 1998; 81(4):145-150. PubMed ID: 12482251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in equivalent and gradient refractive index of the crystalline lens with accommodation.
    Garner LF; Smith G
    Optom Vis Sci; 1997 Feb; 74(2):114-9. PubMed ID: 9097329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The equivalent refractive index of the crystalline lens in childhood.
    Mutti DO; Zadnik K; Adams AJ
    Vision Res; 1995 Jun; 35(11):1565-73. PubMed ID: 7667914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using the Lens Paradox to Optimize an In Vivo MRI-Based Optical Model of the Aging Human Crystalline Lens.
    Lie AL; Pan X; White TW; Donaldson PJ; Vaghefi E
    Transl Vis Sci Technol; 2020 Jul; 9(8):39. PubMed ID: 32855885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Change with age of the refractive index gradient of the human ocular lens.
    Hemenger RP; Garner LF; Ooi CS
    Invest Ophthalmol Vis Sci; 1995 Mar; 36(3):703-7. PubMed ID: 7890500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paraxial equivalent of the gradient-index lens of the human eye.
    Manns F; Ho A
    Biomed Opt Express; 2022 Oct; 13(10):5131-5150. PubMed ID: 36425626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in spherical aberration after lens refilling with a silicone oil.
    Wong KH; Koopmans SA; Terwee T; Kooijman AC
    Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1261-7. PubMed ID: 17325171
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equivalent refractive index of the human lens upon accommodative response.
    Hermans EA; Dubbelman M; Van der Heijde R; Heethaar RM
    Optom Vis Sci; 2008 Dec; 85(12):1179-84. PubMed ID: 19050472
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optical power of the isolated human crystalline lens.
    Borja D; Manns F; Ho A; Ziebarth N; Rosen AM; Jain R; Amelinckx A; Arrieta E; Augusteyn RC; Parel JM
    Invest Ophthalmol Vis Sci; 2008 Jun; 49(6):2541-8. PubMed ID: 18316704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Relationship between Crystalline Lens Power and Refractive Error in Older Chinese Adults: The Shanghai Eye Study.
    He J; Lu L; He X; Xu X; Du X; Zhang B; Zhao H; Sha J; Zhu J; Zou H; Xu X
    PLoS One; 2017; 12(1):e0170030. PubMed ID: 28114313
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Equivalent power of the crystalline lens of the human eye: comparison of methods of calculation.
    Smith G; Atchison DA
    J Opt Soc Am A Opt Image Sci Vis; 1997 Oct; 14(10):2537-46. PubMed ID: 9316271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Refractive power and biometric properties of the nonhuman primate isolated crystalline lens.
    Borja D; Manns F; Ho A; Ziebarth NM; Acosta AC; Arrieta-Quintera E; Augusteyn RC; Parel JM
    Invest Ophthalmol Vis Sci; 2010 Apr; 51(4):2118-25. PubMed ID: 20107174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical modelling of the possible origins of transient refractive changes in diabetic patients.
    Charman WN
    Ophthalmic Physiol Opt; 2012 Nov; 32(6):485-91. PubMed ID: 22958271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanisms of emmetropization in the aging eye.
    Ooi CS; Grosvenor T
    Optom Vis Sci; 1995 Feb; 72(2):60-6. PubMed ID: 7753529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometry-invariant gradient refractive index lens: analytical ray tracing.
    Bahrami M; Goncharov AV
    J Biomed Opt; 2012 May; 17(5):055001. PubMed ID: 22612122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracapsular accommodation mechanism in terms of lens curvature gradient.
    Lockett-Ruiz V; Navarro R; López-Gil N
    Ophthalmic Physiol Opt; 2024 Mar; 44(2):334-346. PubMed ID: 38299736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aging of the optics of the human eye: lens refraction models and principal plane locations.
    Koretz JF; Cook CA
    Optom Vis Sci; 2001 Jun; 78(6):396-404. PubMed ID: 11444628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GRINCU lens with conicoid iso-indicial surfaces: application for modeling the crystalline lens.
    Navarro R; Baquedano S; Sánchez-Cano AI
    Opt Express; 2021 Sep; 29(20):30998-31009. PubMed ID: 34615202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A paraxial schematic eye model for the growing C57BL/6 mouse.
    Schmucker C; Schaeffel F
    Vision Res; 2004; 44(16):1857-67. PubMed ID: 15145680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical 'dampening' of the refractive error to axial length ratio: implications for outcome measures in myopia control studies.
    Cruickshank FE; Logan NS
    Ophthalmic Physiol Opt; 2018 May; 38(3):290-297. PubMed ID: 29691929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.