BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 12482450)

  • 21. Biotransformation XLV. Transformations of 4-ene-3-oxo steroids in Fusarium culmorum culture.
    Kołek T; Swizdor A
    J Steroid Biochem Mol Biol; 1998 Oct; 67(1):63-9. PubMed ID: 9780031
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Probing Steroidal Substrate Specificity of Cytochrome P450 BM3 Variants.
    Liu X; Wang ZB; Wang YN; Kong JQ
    Molecules; 2016 Jun; 21(6):. PubMed ID: 27294908
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Exploring mutasynthesis to increase structural diversity in the synthesis of highly oxygenated polyketide lactones.
    Botubol-Ares JM; Durán-Peña MJ; Macías-Sánchez AJ; Hanson JR; Collado IG; Hernández-Galán R
    Org Biomol Chem; 2014 Jul; 12(28):5304-10. PubMed ID: 24927251
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of metabolites of fungicidal cymoxanil in a sensitive strain of Botrytis cinerea.
    Tellier F; Fritz R; Kerhoas L; Ducrot PH; Einhorn J; Carlin-Sinclair A; Leroux P
    J Agric Food Chem; 2008 Sep; 56(17):8050-7. PubMed ID: 18693740
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microbial transformations of steroids--VI. Transformation of testosterone and androstenedione by Botryosphaerica obtusa.
    Smith KE; Latif S; Kirk DN
    J Steroid Biochem; 1990 Jan; 35(1):115-20. PubMed ID: 2308322
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Detoxification Mechanism of 8,8-Dimethyl-3-[(
    Mendoza L; Vivanco M; Melo R; Castro P; Araya-Maturana R; Cotoras M
    Molecules; 2019 Feb; 24(3):. PubMed ID: 30717324
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biotransformation of copper oxide nanoparticles by the pathogenic fungus Botrytis cinerea.
    Kovačec E; Regvar M; van Elteren JT; Arčon I; Papp T; Makovec D; Vogel-Mikuš K
    Chemosphere; 2017 Aug; 180():178-185. PubMed ID: 28407547
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biotransformations of steroid compounds by Chaetomium sp. KCH 6651.
    Janeczko T; Dmochowska-Gładysz J; Kostrzewa-Susłow E; Białońska A; Ciunik Z
    Steroids; 2009 Aug; 74(8):657-61. PubMed ID: 19463686
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biotransformation XLVII: transformations of 5-ene steroids in Fusarium culmorum culture.
    Kołek T
    J Steroid Biochem Mol Biol; 1999 Nov; 71(1-2):83-90. PubMed ID: 10619360
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial transformations of steroids--X. Cytochromes P-450 11 alpha-hydroxylase and C17-C20 lyase and a 1-ene dehydrogenase transform steroids in Nectria haematococca.
    Ahmed F; Williams RA; Smith KE
    J Steroid Biochem Mol Biol; 1996 Jun; 58(3):337-49. PubMed ID: 8836168
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Secobotrytriendiol and related sesquiterpenoids: new phytotoxic metabolites from Botrytis cinerea.
    Durán-Patrón R; Hernández-Galán R; Collado IG
    J Nat Prod; 2000 Feb; 63(2):182-4. PubMed ID: 10691704
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biotransformation of steroids by the fission yeast Schizosaccharomyces pombe.
    Pajic T; Vitas M; Zigon D; Pavko A; Kelly SL; Komel R
    Yeast; 1999 Jun; 15(8):639-45. PubMed ID: 10392442
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Microbial transformations of steroids--IV. 6,7-Dehydrogenation; a new class of fungal steroid transformation product.
    Smith KE; Latif S; Kirk DN; White KA
    J Steroid Biochem; 1989 Aug; 33(2):271-6. PubMed ID: 2770300
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioconversion of 6-(N-methyl-N-phenyl)aminomethyl androstane steroids by Nocardioides simplex.
    Sukhodolskaya G; Fokina V; Shutov A; Nikolayeva V; Savinova T; Grishin Y; Kazantsev A; Lukashev N; Donova M
    Steroids; 2017 Feb; 118():9-16. PubMed ID: 27864019
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidation of Wine Polyphenols by Secretomes of Wild Botrytis cinerea Strains from White and Red Grape Varieties and Determination of Their Specific Laccase Activity.
    Zimdars S; Hitschler J; Schieber A; Weber F
    J Agric Food Chem; 2017 Dec; 65(48):10582-10590. PubMed ID: 29125293
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The formation of sesquiterpenoid presilphiperfolane and cameroonane metabolites in the Bcbot4 null mutant of Botrytis cinerea.
    Franco Dos Santos G; Moraga J; Takahashi JA; Viaud M; Hanson JR; Hernández Galán R; Collado IG
    Org Biomol Chem; 2017 Jun; 15(25):5357-5363. PubMed ID: 28617493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of 1-double bond and 11 beta-hydroxy group on stereospecific microbial reductions of 4-en-3-oxo-steroids.
    Kaufmann G; Schumann G; Hörhold C
    J Steroid Biochem; 1986 Oct; 25(4):561-6. PubMed ID: 3773526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Hydroxylation of androgenic steroids in their target organs].
    Morfin R
    Pathol Biol (Paris); 1988 Sep; 36(7):925-32. PubMed ID: 3059279
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Exploring pathogenic mechanisms of Botrytis cinerea secretome under different ambient pH based on comparative proteomic analysis.
    Li B; Wang W; Zong Y; Qin G; Tian S
    J Proteome Res; 2012 Aug; 11(8):4249-60. PubMed ID: 22746291
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transformation of some 3alpha-substituted steroids by Aspergillus tamarii KITA reveals stereochemical restriction of steroid binding orientation in the minor hydroxylation pathway.
    Christy Hunter A; Khuenl-Brady H; Barrett P; Dodd HT; Dedi C
    J Steroid Biochem Mol Biol; 2010 Feb; 118(3):171-6. PubMed ID: 20026270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.