These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Progress towards the easier use of P450 enzymes. Chefson A; Auclair K Mol Biosyst; 2006 Oct; 2(10):462-9. PubMed ID: 17216026 [TBL] [Abstract][Full Text] [Related]
3. Regio- and enantioselective alkane hydroxylation with engineered cytochromes P450 BM-3. Peters MW; Meinhold P; Glieder A; Arnold FH J Am Chem Soc; 2003 Nov; 125(44):13442-50. PubMed ID: 14583039 [TBL] [Abstract][Full Text] [Related]
4. Protein engineering of the cytochrome P450 monooxygenase from Bacillus megaterium. Urlacher VB; Schmid RD Methods Enzymol; 2004; 388():208-24. PubMed ID: 15289074 [No Abstract] [Full Text] [Related]
5. Engineering cytochrome P450 enzymes for improved activity towards biomimetic 1,4-NADH cofactors. Ryan JD; Fish RH; Clark DS Chembiochem; 2008 Nov; 9(16):2579-82. PubMed ID: 18816544 [No Abstract] [Full Text] [Related]
7. Enantioselective alpha-hydroxylation of 2-arylacetic acid derivatives and buspirone catalyzed by engineered cytochrome P450 BM-3. Landwehr M; Hochrein L; Otey CR; Kasrayan A; Bäckvall JE; Arnold FH J Am Chem Soc; 2006 May; 128(18):6058-9. PubMed ID: 16669674 [TBL] [Abstract][Full Text] [Related]
8. The bacterial P450 BM3: a prototype for a biocatalyst with human P450 activities. Yun CH; Kim KH; Kim DH; Jung HC; Pan JG Trends Biotechnol; 2007 Jul; 25(7):289-98. PubMed ID: 17532492 [TBL] [Abstract][Full Text] [Related]
9. Laboratory evolution of P450 BM3 for mediated electron transfer yielding an activity-improved and reductase-independent variant. Nazor J; Dannenmann S; Adjei RO; Fordjour YB; Ghampson IT; Blanusa M; Roccatano D; Schwaneberg U Protein Eng Des Sel; 2008 Jan; 21(1):29-35. PubMed ID: 18093991 [TBL] [Abstract][Full Text] [Related]
10. Flavocytochrome P450 BM3 substrate selectivity and electron transfer in a model cytochrome P450. Munro AW; Noble MA; Ost TW; Green AJ; McLean KJ; Robledo L; Miles CS; Murdoch J; Chapman SK Subcell Biochem; 2000; 35():297-315. PubMed ID: 11192726 [No Abstract] [Full Text] [Related]
11. Terpene hydroxylation with microbial cytochrome P450 monooxygenases. Janocha S; Schmitz D; Bernhardt R Adv Biochem Eng Biotechnol; 2015; 148():215-50. PubMed ID: 25682070 [TBL] [Abstract][Full Text] [Related]
12. P450BM-3; a tale of two domains--or is it three? Peterson JA; Sevrioukova I; Truan G; Graham-Lorence SE Steroids; 1997 Jan; 62(1):117-23. PubMed ID: 9029725 [TBL] [Abstract][Full Text] [Related]
17. Expression, purification, and characterization of Bacillus subtilis cytochromes P450 CYP102A2 and CYP102A3: flavocytochrome homologues of P450 BM3 from Bacillus megaterium. Gustafsson MC; Roitel O; Marshall KR; Noble MA; Chapman SK; Pessegueiro A; Fulco AJ; Cheesman MR; von Wachenfeldt C; Munro AW Biochemistry; 2004 May; 43(18):5474-87. PubMed ID: 15122913 [TBL] [Abstract][Full Text] [Related]
18. Co-incorporation of heterologously expressed Arabidopsis cytochrome P450 and P450 reductase into soluble nanoscale lipid bilayers. Duan H; Civjan NR; Sligar SG; Schuler MA Arch Biochem Biophys; 2004 Apr; 424(2):141-53. PubMed ID: 15047186 [TBL] [Abstract][Full Text] [Related]
19. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms. Lüdemann SK; Lounnas V; Wade RC J Mol Biol; 2000 Nov; 303(5):797-811. PubMed ID: 11061976 [TBL] [Abstract][Full Text] [Related]
20. Cytochrome P450 BM-3 evolved by random and saturation mutagenesis as an effective indole-hydroxylating catalyst. Li HM; Mei LH; Urlacher VB; Schmid RD Appl Biochem Biotechnol; 2008 Jan; 144(1):27-36. PubMed ID: 18415984 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]