These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 1248339)

  • 1. Chromosome homology and evolution of emydid turtles.
    Bickham JW; Baker RJ
    Chromosoma; 1976 Feb; 54(3):201-19. PubMed ID: 1248339
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sex chromosomes of the Asian black pond turtle, Siebenrockiella crassicollis (Testudines: Emydidae).
    Carr JL; Bickham JW
    Cytogenet Cell Genet; 1981; 31(3):178-83. PubMed ID: 7326996
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chromosome banding pattern conservatism in birds and nonhomology of chromosome banding patterns between birds, turtles, snakes and amphibians.
    Stock AD; Mengden GA
    Chromosoma; 1975; 50(1):69-77. PubMed ID: 48453
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extensive morphological convergence and rapid radiation in the evolutionary history of the family Geoemydidae (old world pond turtles) revealed by SINE insertion analysis.
    Sasaki T; Yasukawa Y; Takahashi K; Miura S; Shedlock AM; Okada N
    Syst Biol; 2006 Dec; 55(6):912-27. PubMed ID: 17345673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cytogenetic Insights into the Evolution of Chromosomes and Sex Determination Reveal Striking Homology of Turtle Sex Chromosomes to Amphibian Autosomes.
    Montiel EE; Badenhorst D; Lee LS; Literman R; Trifonov V; Valenzuela N
    Cytogenet Genome Res; 2016; 148(4):292-304. PubMed ID: 27423490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of the youngest sex chromosomes reveals first case of convergent co-option of ancestral autosomes in turtles.
    Montiel EE; Badenhorst D; Tamplin J; Burke RL; Valenzuela N
    Chromosoma; 2017 Feb; 126(1):105-113. PubMed ID: 26842819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogeny and temporal diversification of the New World pond turtles (Emydidae).
    Spinks PQ; Thomson RC; McCartney-Melstad E; Shaffer HB
    Mol Phylogenet Evol; 2016 Oct; 103():85-97. PubMed ID: 27400630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Terrestrial feeding in aquatic turtles: environment-dependent feeding behavior modulation and the evolution of terrestrial feeding in Emydidae.
    Stayton CT
    J Exp Biol; 2011 Dec; 214(Pt 24):4083-91. PubMed ID: 22116751
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution of chromosomal variation in cottontails, genus Sylvilagus (Mammalia: Lagomorpha). II. Sylvilagus audubonii, S. idahoensis, S. nuttallii, and S. palustris.
    Robinson TJ; Elder FF; Chapman JA
    Cytogenet Cell Genet; 1984; 38(4):282-9. PubMed ID: 6510022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Karyotypic characterization of Trachemys dorbigni (Testudines: Emydidae) and Chelonoidis (Geochelone) donosobarrosi (Testudines: Testudinidae), two species of Cryptodiran turtles from Argentina.
    Martinez PA; Boeris JM; Sánchez J; Pastori MC; Bolzán AD; Ledesma MA
    Genetica; 2009 Dec; 137(3):277-83. PubMed ID: 19543981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insights into Emydid Turtle Cytogenetics: The European Pond Turtle as a Model Species.
    Iannucci A; Svartman M; Bellavita M; Chelazzi G; Stanyon R; Ciofi C
    Cytogenet Genome Res; 2019; 157(3):166-171. PubMed ID: 30630162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Karyotypic evolution in family Hipposideridae (Chiroptera, Mammalia) revealed by comparative chromosome painting, G- and C-banding.
    Mao XG; Wang JH; Su WT; Wang YX; Yang FT; Nie WH
    Dongwuxue Yanjiu; 2010 Oct; 31(5):453-60. PubMed ID: 20979246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromosome banding in Amphibia. XVIII. Karyotype evolution and genomic size variation in Pleurodema (Anura, Leptodactylidae).
    Schmid M; Steinlein C; Feichtinger W; Poot M
    Cytogenet Cell Genet; 1993; 62(1):42-8. PubMed ID: 7678550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 5-Methylcytosine-Rich Heterochromatin in Reptiles.
    Schmid M; Steinlein C; Reiter AM; Rovatsos M; Altmanová M; Mazzoleni S; Johnson Pokorná M; Kratochvíl L
    Cytogenet Genome Res; 2019; 157(1-2):53-64. PubMed ID: 30641524
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chromosomal evolution of the Canidae. II. Divergence from the primitive carnivore karyotype.
    Wayne RK; Nash WG; O'Brien SJ
    Cytogenet Cell Genet; 1987; 44(2-3):134-41. PubMed ID: 3568762
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chromosomal polymorphisms due to heterochromatin growth and pericentric inversions in white-bellied rat, Niviventer confucianus, from China.
    Wang JX; Zhao XF; Koh HS; Deng Y; Qi HY
    Hereditas; 2003; 138(1):59-64. PubMed ID: 12830986
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Karyological characterization of the endemic Iberian rock lizard, Iberolacerta monticola (Squamata, Lacertidae): insights into sex chromosome evolution.
    Rojo V; Giovannotti M; Naveira H; Nisi Cerioni P; González-Tizón AM; Caputo Barucchi V; Galán P; Olmo E; Martínez-Lage A
    Cytogenet Genome Res; 2014; 142(1):28-39. PubMed ID: 24296524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular phylogenetics of emydine turtles: taxonomic revision and the evolution of shell kinesis.
    Feldman CR; Parham JF
    Mol Phylogenet Evol; 2002 Mar; 22(3):388-98. PubMed ID: 11884163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. C-banding karyotype and relationship of the dipodids Allactaga and Jaculus (Mammalia: Rodentia) in Egypt.
    Shahin AA; Ata AT
    Folia Biol (Krakow); 2004; 52(1-2):25-31. PubMed ID: 15521644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chromosomal interrelationship of hamster species of the genus Mesocricetus.
    Popescu NC; DePaolo JA
    Cytogenet Cell Genet; 1980; 28(1-2):10-23. PubMed ID: 7449429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.