BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 12483679)

  • 1. Catalysis on the coastline: theozyme, molecular dynamics, and free energy perturbation analysis of antibody 21D8 catalysis of the decarboxylation of 5-nitro-3-carboxybenzisoxazole.
    Ujaque G; Tantillo DJ; Hu Y; Houk KN; Hotta K; Hilvert D
    J Comput Chem; 2003 Jan; 24(1):98-110. PubMed ID: 12483679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalysis of decarboxylation by a preorganized heterogeneous microenvironment: crystal structures of abzyme 21D8.
    Hotta K; Lange H; Tantillo DJ; Houk KN; Hilvert D; Wilson IA
    J Mol Biol; 2000 Oct; 302(5):1213-25. PubMed ID: 11183784
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing ligand recognition in the decarboxylase antibody 21D8: implications for the catalytic mechanism.
    Hotta K; Wilson IA; Hilvert D
    Biochemistry; 2002 Jan; 41(3):772-9. PubMed ID: 11790098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonspecific medium effects versus specific group positioning in the antibody and albumin catalysis of the base-promoted ring-opening reactions of benzisoxazoles.
    Hu Y; Houk KN; Kikuchi K; Hotta K; Hilvert D
    J Am Chem Soc; 2004 Jul; 126(26):8197-205. PubMed ID: 15225061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for a disfavored elimination reaction in catalytic antibody 1D4.
    Larsen NA; Heine A; Crane L; Cravatt BF; Lerner RA; Wilson IA
    J Mol Biol; 2001 Nov; 314(1):93-102. PubMed ID: 11724535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition state docking: a probe for noncovalent catalysis in biological systems. Application to antibody-catalyzed ester hydrolysis.
    Tantillo DJ; Houk KN
    J Comput Chem; 2002 Jan; 23(1):84-95. PubMed ID: 11913392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic and structural basis for transition-state stabilization in antibody-catalyzed hydrolysis.
    Oda M; Ito N; Tsumuraya T; Suzuki K; Sakakura M; Fujii I
    J Mol Biol; 2007 May; 369(1):198-209. PubMed ID: 17428500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical investigation of the origins of catalysis of a retro-Diels-Alder reaction by antibody 10F11.
    Leach AG; Houk KN; Reymond JL
    J Org Chem; 2004 May; 69(11):3683-92. PubMed ID: 15152997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for amide hydrolysis catalyzed by the 43C9 antibody.
    Thayer MM; Olender EH; Arvai AS; Koike CK; Canestrelli IL; Stewart JD; Benkovic SJ; Getzoff ED; Roberts VA
    J Mol Biol; 1999 Aug; 291(2):329-45. PubMed ID: 10438624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A structural basis for transition-state stabilization in antibody-catalyzed hydrolysis: crystal structures of an abzyme at 1. 8 A resolution.
    Kristensen O; Vassylyev DG; Tanaka F; Morikawa K; Fujii I
    J Mol Biol; 1998 Aug; 281(3):501-11. PubMed ID: 9698565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct hydroxide attack is a plausible mechanism for amidase antibody 43C9.
    Chong LT; Bandyopadhyay P; Scanlan TS; Kuntz ID; Kollman PA
    J Comput Chem; 2003 Sep; 24(12):1371-7. PubMed ID: 12868101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for antibody catalysis of a disfavored ring closure reaction.
    Gruber K; Zhou B; Houk KN; Lerner RA; Shevlin CG; Wilson IA
    Biochemistry; 1999 Jun; 38(22):7062-74. PubMed ID: 10353817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystallographic and biochemical analysis of cocaine-degrading antibody 15A10.
    Larsen NA; de Prada P; Deng SX; Mittal A; Braskett M; Zhu X; Wilson IA; Landry DW
    Biochemistry; 2004 Jun; 43(25):8067-76. PubMed ID: 15209502
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interplay between binding energy and catalysis in the evolution of a catalytic antibody.
    Ulrich HD; Mundorff E; Santarsiero BD; Driggers EM; Stevens RC; Schultz PG
    Nature; 1997 Sep; 389(6648):271-5. PubMed ID: 9305839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study of catalytic efficiency of a Diels-Alderase catalytic antibody: an indirect effect produced during the maturation process.
    Martí S; Andrés J; Moliner V; Silla E; Tuñón I; Bertrán J
    Chemistry; 2008; 14(2):596-602. PubMed ID: 17960540
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibody-catalyzed oxy-cope rearrangement: mechanism and origins of catalysis and stereoselectivity from DFT quantum mechanics and flexible docking.
    Black KA; Leach AG; Kalani MY; Houk KN
    J Am Chem Soc; 2004 Aug; 126(31):9695-708. PubMed ID: 15291573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Expression improvement and mechanistic study of the retro-Diels-Alderase catalytic antibody 10F11 by site-directed mutagenesis.
    Zheng L; Goddard JP; Baumann U; Reymond JL
    J Mol Biol; 2004 Aug; 341(3):807-14. PubMed ID: 15288788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis of the transition-state stabilization in antibody-catalyzed hydrolysis.
    Sakakura M; Takahashi H; Shimba N; Fujii I; Shimada I
    J Mol Biol; 2007 Mar; 367(1):133-47. PubMed ID: 17239396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic effects on reactant and transition states. The case of chalcone isomerase.
    Ruiz-Pernía JJ; Silla E; Tuñón I
    J Am Chem Soc; 2007 Jul; 129(29):9117-24. PubMed ID: 17602559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A theoretical study of the catalytic mechanism of formate dehydrogenase.
    Castillo R; Oliva M; Martí S; Moliner V
    J Phys Chem B; 2008 Aug; 112(32):10012-22. PubMed ID: 18646819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.