BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 12483698)

  • 1. Controlling the spatial distribution of ECM components in degradable PEG hydrogels for tissue engineering cartilage.
    Bryant SJ; Anseth KS
    J Biomed Mater Res A; 2003 Jan; 64(1):70-9. PubMed ID: 12483698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring the degradation of hydrogels formed from multivinyl poly(ethylene glycol) and poly(vinyl alcohol) macromers for cartilage tissue engineering.
    Martens PJ; Bryant SJ; Anseth KS
    Biomacromolecules; 2003; 4(2):283-92. PubMed ID: 12625723
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Encapsulating chondrocytes in copolymer gels: bimodal degradation kinetics influence cell phenotype and extracellular matrix development.
    Rice MA; Anseth KS
    J Biomed Mater Res A; 2004 Sep; 70(4):560-8. PubMed ID: 15307160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encapsulating chondrocytes in degrading PEG hydrogels with high modulus: engineering gel structural changes to facilitate cartilaginous tissue production.
    Bryant SJ; Bender RJ; Durand KL; Anseth KS
    Biotechnol Bioeng; 2004 Jun; 86(7):747-55. PubMed ID: 15162450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic compressive loading influences degradation behavior of PEG-PLA hydrogels.
    Nicodemus GD; Shiplet KA; Kaltz SR; Bryant SJ
    Biotechnol Bioeng; 2009 Feb; 102(3):948-59. PubMed ID: 18831003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of photo-cross-linked oligo[poly(ethylene glycol) fumarate] hydrogels for cartilage tissue engineering.
    Dadsetan M; Szatkowski JP; Yaszemski MJ; Lu L
    Biomacromolecules; 2007 May; 8(5):1702-9. PubMed ID: 17419584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manipulations in hydrogel degradation behavior enhance osteoblast function and mineralized tissue formation.
    Benoit DS; Durney AR; Anseth KS
    Tissue Eng; 2006 Jun; 12(6):1663-73. PubMed ID: 16846361
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age impacts extracellular matrix metabolism in chondrocytes encapsulated in degradable hydrogels.
    Skaalure SC; Milligan IL; Bryant SJ
    Biomed Mater; 2012 Apr; 7(2):024111. PubMed ID: 22456004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering.
    Neumann AJ; Quinn T; Bryant SJ
    Acta Biomater; 2016 Jul; 39():1-11. PubMed ID: 27180026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interconnected macroporous poly(ethylene glycol) cryogels as a cell scaffold for cartilage tissue engineering.
    Hwang Y; Sangaj N; Varghese S
    Tissue Eng Part A; 2010 Oct; 16(10):3033-41. PubMed ID: 20486791
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Articular cartilage generation applying PEG-LA-DM/PEGDM copolymer hydrogels.
    Zhao X; Papadopoulos A; Ibusuki S; Bichara DA; Saris DB; Malda J; Anseth KS; Gill TJ; Randolph MA
    BMC Musculoskelet Disord; 2016 Jun; 17():245. PubMed ID: 27255078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collagen mimetic peptide-conjugated photopolymerizable PEG hydrogel.
    Lee HJ; Lee JS; Chansakul T; Yu C; Elisseeff JH; Yu SM
    Biomaterials; 2006 Oct; 27(30):5268-76. PubMed ID: 16797067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological osmolarities do not enhance long-term tissue synthesis in chondrocyte-laden degradable poly(ethylene glycol) hydrogels.
    Skaalure SC; Radhakrishnan SM; Bryant SJ
    J Biomed Mater Res A; 2015 Jun; 103(6):2186-92. PubMed ID: 25205522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Incorporation of tissue-specific molecules alters chondrocyte metabolism and gene expression in photocrosslinked hydrogels.
    Bryant SJ; Arthur JA; Anseth KS
    Acta Biomater; 2005 Mar; 1(2):243-52. PubMed ID: 16701801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A material decoy of biological media based on chitosan physical hydrogels: application to cartilage tissue engineering.
    Montembault A; Tahiri K; Korwin-Zmijowska C; Chevalier X; Corvol MT; Domard A
    Biochimie; 2006 May; 88(5):551-64. PubMed ID: 16626850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Degradation improves tissue formation in (un)loaded chondrocyte-laden hydrogels.
    Roberts JJ; Nicodemus GD; Greenwald EC; Bryant SJ
    Clin Orthop Relat Res; 2011 Oct; 469(10):2725-34. PubMed ID: 21347817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanical stimulation of TMJ condylar chondrocytes encapsulated in PEG hydrogels.
    Nicodemus GD; Villanueva I; Bryant SJ
    J Biomed Mater Res A; 2007 Nov; 83(2):323-31. PubMed ID: 17437304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering.
    Skaalure SC; Dimson SO; Pennington AM; Bryant SJ
    Acta Biomater; 2014 Aug; 10(8):3409-20. PubMed ID: 24769116
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and characterization of hyaluronic acid-poly(ethylene glycol) hydrogels via Michael addition: An injectable biomaterial for cartilage repair.
    Jin R; Moreira Teixeira LS; Krouwels A; Dijkstra PJ; van Blitterswijk CA; Karperien M; Feijen J
    Acta Biomater; 2010 Jun; 6(6):1968-77. PubMed ID: 20025999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cross-linking density alters early metabolic activities in chondrocytes encapsulated in poly(ethylene glycol) hydrogels and cultured in the rotating wall vessel.
    Villanueva I; Klement BJ; von Deutsch D; Bryant SJ
    Biotechnol Bioeng; 2009 Mar; 102(4):1242-50. PubMed ID: 18949761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.