BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 12483698)

  • 21. Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells (MSCs) in different hydrogels: influence of collagen type II extracellular matrix on MSC chondrogenesis.
    Bosnakovski D; Mizuno M; Kim G; Takagi S; Okumura M; Fujinaga T
    Biotechnol Bioeng; 2006 Apr; 93(6):1152-63. PubMed ID: 16470881
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Degradative properties and cytocompatibility of a mixed-mode hydrogel containing oligo[poly(ethylene glycol)fumarate] and poly(ethylene glycol)dithiol.
    Brink KS; Yang PJ; Temenoff JS
    Acta Biomater; 2009 Feb; 5(2):570-9. PubMed ID: 18948068
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzymatically degradable poly(ethylene glycol) based hydrogels for adipose tissue engineering.
    Brandl FP; Seitz AK; Tessmar JK; Blunk T; Göpferich AM
    Biomaterials; 2010 May; 31(14):3957-66. PubMed ID: 20170951
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oligo(trimethylene carbonate)-poly(ethylene glycol)-oligo(trimethylene carbonate) triblock-based hydrogels for cartilage tissue engineering.
    Zhang C; Sangaj N; Hwang Y; Phadke A; Chang CW; Varghese S
    Acta Biomater; 2011 Sep; 7(9):3362-9. PubMed ID: 21664305
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Crosslinking density influences the morphology of chondrocytes photoencapsulated in PEG hydrogels during the application of compressive strain.
    Bryant SJ; Anseth KS; Lee DA; Bader DL
    J Orthop Res; 2004 Sep; 22(5):1143-9. PubMed ID: 15304291
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An approach to modulate degradation and mesenchymal stem cell behavior in poly(ethylene glycol) networks.
    Hudalla GA; Eng TS; Murphy WL
    Biomacromolecules; 2008 Mar; 9(3):842-9. PubMed ID: 18288800
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Injectable and photopolymerizable tissue-engineered auricular cartilage using poly(ethylene glycol) dimethacrylate copolymer hydrogels.
    Papadopoulos A; Bichara DA; Zhao X; Ibusuki S; Randolph MA; Anseth KS; Yaremchuk MJ
    Tissue Eng Part A; 2011 Jan; 17(1-2):161-9. PubMed ID: 20695772
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly(ethylene glycol) hydrogels.
    Bryant SJ; Anseth KS
    J Biomed Mater Res; 2002 Jan; 59(1):63-72. PubMed ID: 11745538
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Manipulations in hydrogel chemistry control photoencapsulated chondrocyte behavior and their extracellular matrix production.
    Bryant SJ; Durand KL; Anseth KS
    J Biomed Mater Res A; 2003 Dec; 67(4):1430-6. PubMed ID: 14624532
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bovine primary chondrocyte culture in synthetic matrix metalloproteinase-sensitive poly(ethylene glycol)-based hydrogels as a scaffold for cartilage repair.
    Park Y; Lutolf MP; Hubbell JA; Hunziker EB; Wong M
    Tissue Eng; 2004; 10(3-4):515-22. PubMed ID: 15165468
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of porous PEG hydrogels that enable efficient, uniform cell-seeding and permit early neural process extension.
    Namba RM; Cole AA; Bjugstad KB; Mahoney MJ
    Acta Biomater; 2009 Jul; 5(6):1884-97. PubMed ID: 19250891
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of crosslinking density on cartilage formation in photocrosslinkable hydrogels.
    Bryant SJ; Nuttelman CR; Anseth KS
    Biomed Sci Instrum; 1999; 35():309-14. PubMed ID: 11143369
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Osteochondral repair in the rabbit model utilizing bilayered, degradable oligo(poly(ethylene glycol) fumarate) hydrogel scaffolds.
    Holland TA; Bodde EW; Baggett LS; Tabata Y; Mikos AG; Jansen JA
    J Biomed Mater Res A; 2005 Oct; 75(1):156-67. PubMed ID: 16052490
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spatiotemporal neocartilage growth in matrix-metalloproteinase-sensitive poly(ethylene glycol) hydrogels under dynamic compressive loading: an experimental and computational approach.
    Schneider MC; Lalitha Sridhar S; Vernerey FJ; Bryant SJ
    J Mater Chem B; 2020 Apr; 8(14):2775-2791. PubMed ID: 32155233
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In vitro and in vivo test of PEG/PCL-based hydrogel scaffold for cell delivery application.
    Park JS; Woo DG; Sun BK; Chung HM; Im SJ; Choi YM; Park K; Huh KM; Park KH
    J Control Release; 2007 Dec; 124(1-2):51-9. PubMed ID: 17904679
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of network structure on the degradation of photo-cross-linked PLA-b-PEG-b-PLA hydrogels.
    Shah NM; Pool MD; Metters AT
    Biomacromolecules; 2006 Nov; 7(11):3171-7. PubMed ID: 17096548
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrazone covalent adaptable networks modulate extracellular matrix deposition for cartilage tissue engineering.
    Richardson BM; Wilcox DG; Randolph MA; Anseth KS
    Acta Biomater; 2019 Jan; 83():71-82. PubMed ID: 30419278
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fundamental studies of biodegradable hydrogels as cartilage replacement materials.
    Metters AT; Anseth KS; Bowman CN
    Biomed Sci Instrum; 1999; 35():33-8. PubMed ID: 11143373
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long-term stable fibrin gels for cartilage engineering.
    Eyrich D; Brandl F; Appel B; Wiese H; Maier G; Wenzel M; Staudenmaier R; Goepferich A; Blunk T
    Biomaterials; 2007 Jan; 28(1):55-65. PubMed ID: 16962167
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Synthesis and characterization of biocompatible, degradable, light-curable, polyurethane-based elastic hydrogels.
    Zhang C; Zhang N; Wen X
    J Biomed Mater Res A; 2007 Sep; 82(3):637-50. PubMed ID: 17323316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.